
Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to

Cryptocurrency Custody∗

Yehuda Lindell† Ariel Nof† Samuel Ranellucci‡

October 14, 2018

Abstract

ECDSA is a standardized signing algorithm that is widely used in TLS, code signing, cryp-
tocurrency and more. Due to its importance, the problem of securely computing ECDSA in a
distributed manner (known as threshold signing) has received considerable interest. However,
despite this interest, there is still no full threshold solution for more than 2 parties (meaning
that any t-out-of-n parties can sign, security is preserved for any t−1 or fewer corrupted parties,
and t ≤ n can be any value thus supporting an honest minority) that has practical key distri-
bution. This is due to the fact that all previous solutions for this utilize Paillier homomorphic
encryption, and efficient distributed Paillier key generation for more than two parties is not
known.

In this paper, we present the first truly practical full threshold ECDSA signing protocol
that has both fast signing and fast key distribution. This solves a years-old open problem,
and opens the door to practical uses of threshold ECDSA signing that are in demand today.
One of these applications is the construction of secure cryptocurrency wallets (where key shares
are spread over multiple devices and so are hard to steal) and cryptocurrency custody solu-
tions (where large sums of invested cryptocurrency are strongly protected by splitting the key
between a bank/financial institution, the customer who owns the currency, and possibly a third-
party trustee, in multiple shares at each). There is growing practical interest in such solutions,
but prior to our work these could not be deployed today due to the need for distributed key
generation.

1 Introduction

1.1 Background and Prior Work

In the late 1980s and the 1990s, a large body of research emerged around the problem of threshold
cryptography ; cf. [3, 9, 11, 12, 17, 34, 33, 29]. In its most general form, this problem considers the

∗An extended abstract of this work (by the first two authors) appeared at ACM CCS 2018. This paper includes
the full proofs of security, as well as a performance improvement to the Paillier-based private multiplication.
†Dept. of Computer Science, Bar-Ilan University, Israel. lindell@biu.ac.il, nofarie@cs.biu.ac.il. Some

of this work was carried out for Unbound Tech Ltd. This work was also supported by the European Research
Council under the ERC consolidators grant agreement n. 615172 (HIPS), by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber Directorate in the Prime Minister’s
Office, and by the Alter Family Foundation.
‡Unbound Tech, Ltd. samuel.ranellucci@unboundtech.com

1

setting of a private key shared between n parties with the property that any subset of t parties may
be able to decrypt or sign, but any set of less than t parties can do nothing. This is a specific example
of secure multiparty computation, where the functionality being computed is either decryption or
signing. Note that trivial solutions like secret sharing the private key and reconstructing to decrypt
or sign do not work since once the key is reconstructed, any single party can decrypt or sign by
itself from that point on. Rather, the requirement is that a subset of t parties is needed for every
private-key operation.

Threshold cryptography can be used in applications where multiple signers are needed to gen-
erate a signature, and likewise where highly confidential documents should only be decrypted and
viewed by a quorum. Furthermore, threshold cryptography can be used to provide a high level of
key protection. This is achieved by sharing the key on multiple devices (or between multiple users)
and carrying out private-key operations via a secure protocol that reveals nothing but the output.
This provides key protection since an adversary needs to breach multiple devices in order to obtain
the key. After intensive research on the topic in the 1990s and early 2000s, threshold cryptography
received considerably less interest in the past decade. However, interest has recently been renewed.
This can be seen by the fact that a number of startup companies are now deploying threshold
cryptography for the purpose of key protection [35, 36, 37]. Another reason is due to the fact that
ECDSA signing is used in Bitcoin and other cryptocurrencies, and the theft of a signing key can
immediately be translated into concrete financial loss. Bitcoin has a multisignature solution built
in, which is based on using multiple distinct signing keys rather than a threshold signing scheme.
However, the flexibility of the Bitcoin multisig is limited, not supporting arbitrary and complex ac-
cess structures. In addition, plain multisig solutions introduce anonymity and scalability problems
(as discussed in [18, Section 6.3]), and do not support revoking a party’s share, which can be a
crucial feature in some applications. Thus, a more general solution may be obtained via threshold
cryptography.

Fast threshold cryptography protocols exist for a wide variety of problems, including RSA
signing and decryption, ElGamal and ECIES encryption, Schnorr signatures, Cramer-Shoup, and
more. Despite the above successes, and despite the fact that DSA/ECDSA is a widely-used stan-
dard, DSA/ECDSA has resisted attempts at constructing efficient protocols for threshold signing.
This seems to be due to the need to compute k and k−1 without knowing k, as discussed in detail
in [28]. The first solution to overcome this difficulty in the honest minority setting was by Macken-
zie and Reiter in [29] who use Paillier additively homomorphic encryption in order to generate a
signature between two parties. Their protocol required heavy zero-knowledge proofs, but this was
improved in [18] and later in [28]. More significant to our setting, [18, 4] show how to generalize the
Mackenzie-Reiter paradigm to any number of parties and with a full threshold. This means that
for any n number of parties and any threshold t ≤ n (even t = n) it is possible for any subset of t
parties to sign, and security is preserved in the presence of any subset of t − 1 corrupted parties.
This is a significant breakthrough, but falls short of providing a full solution in practice since it
requires distributed Paillier key generation. Although two-party distributed Paillier key generation
can work in practice [15] (albeit requiring about 40 seconds between two strong servers), it is still
unknown as to whether this can be done practically for more than two parties. We remark that
an extremely fast two-party ECDSA signing protocol was recently presented by [13] (the protocol
of [13] is significantly faster in signing time, but has much higher bandwidth than [28]). However,
it is unclear how to generalize their method to the multiparty setting. Thus, despite decades of
research in threshold cryptography and secure multiparty computation, the following basic question

2

remains open:

Is it possible to construct a full-threshold protocol for multiparty ECDSA, with practical
distributed key generation and signing?

We answer this question in the affirmative.

1.2 Our Results

In this paper, we present the first full threshold ECDSA signing protocol that has practical dis-
tributed key generation and fast signing. We achieve this breakthrough by replacing the Paillier
additively homomorphic encryption with ElGamal in-the-exponent that also supports additive ho-
momorphism. This enables us to compute an encrypted signature in a similar way to that of [18],
except that upon decryption the parties are only able to receive s · G (where G is the generator
point of the Elliptic curve group) and not s itself, where s is the desired portion of the signature.
This is due to the fact that we use ElGamal “in the exponent” and so we only obtain the result “in
the exponent”.1 We overcome this by computing the signature value s in parallel using a method
that guarantees privacy but not correctness. The combination of the above yields a secure solution
since the encrypted signature is verified and so s-in-the-clear is only revealed once equality with
the encrypted signature is validated.

The above method has many significant advantages over using Paillier. First, we do not need
distributed key generation of Paillier keys which is hard, but just distributed key generation of
ElGamal keys which is very easy. Second, Elliptic curve operations themselves are far more efficient
than Paillier operations. Third, zero-knowledge proofs that are very expensive in Paillier are
far more efficient in the Elliptic curve group (it is well known that zero-knowledge is easier in
known-order groups). Fourth, by working in the same Elliptic curve group as the signature, all
homomorphic operations are automatically modulo the required group order q. This removes
many of the difficulties in using Paillier, that required adding randomness to enable effectively
working over the integers, and then proving in zero-knowledge that the “correct amount” was
added. Another issue that arises when securely computing ECDSA is how to force the parties to
use the correct k−1. We use a similar method as that of [18] which is to multiplicative mask k with a
random value ρ, and then to reveal k·ρ. This enables each party to locally invert and obtain k−1 ·ρ−1
which can be used in generating the signature. Once again, by working within ElGamal and not
Paillier, we can achieve this far more efficiently than [18] and without the expensive Paillier-based
zero-knowledge proofs that they require.

We remark that our entire protocol works over any group, and thus can be used to securely
compute DSA in exactly the same way.

1.3 Cryptocurrency Wallets and Custody

As mentioned above, one important application of our protocol in practice today is in the protection
of cryptocurrency. Although there are differing opinions on the benefit of existing cryptocurrencies

1This is called ElGamal in-the-exponent due to typical multiplicative group notation. Specifically, encryption of
some x using generator g and public-key h is carried out by computing (gr, hr · gx). In Elliptic curve notation, this
becomes (r ·G, r · P + x ·G) for public-key P. It is easy to see that this scheme is additively homomorphic, but that
decryption only returns x ·G but not x itself. Since obtaining x requires solving the discrete log problem, this is not
possible except for very small values of x.

3

to society, it is well accepted that honest investors should be protected from mass theft that we
are already seeing in this space. On the end user side, a secure cryptocurrency wallet should
enable the user to split their signing key amongst multiple devices, and require all (or a subset) in
order to transfer money. On the financial institution side, there is real interest in banks and other
institutions to offer full cryptocurrency custody solutions to large customers. Such a solution is
intended for use by investors who wish to protect very large amounts of cryptocurrency (even in
the billions) as part of their investment portfolio. Due to the high amount of funds involved, it is
not possible to enable any single party to have access to the signing key. Furthermore, neither the
bank nor the customer should have the ability to singlehandedly transfer funds (the bank cannot
due to liability, and the customer cannot due to the fact that its systems are typically less secure
than the bank). Thus, a natural solution is to split the signing key into multiple parts, both in
the bank and the customer (and potentially an additional third trustee) and then require some
threshold in each entity to sign.2 A full-blown solution for this will typically have different roles
both at the bank and the customer (one set of parties would authorize the signature itself as being
requested from the customer, another would verify that the transfer meets the agreed-upon policy,
and so on). Thus, such solutions require complex access structures for signing. We discuss this in
more detail in Section 5.4 and show that our protocol fully supports these requirements. Thus, our
protocol provides the first real solution for this problem that is of very practical relevance today.

1.4 Concurrent Work

Concurrently to this work, [19] also present a multiparty ECDSA protocol with practical key gen-
eration. The protocols have some similarity, but the methods used to prevent adversarial behavior
are very different. One significant difference between the two results is the hardness assumption
and security model. We prove that our protocol is secure under simulation-based definitions, show-
ing that it securely computes a standard ideal functionality for ECDSA. In addition, we prove the
security of our protocol under the standard assumptions that the DDH problem is hard and that
Paillier encryption is indistinguishable. In contrast, [19] prove the security of their protocol under
a game-based definition, and require DDH as well as an ad-hoc but plausible assumption called
Paillier-EC (first introduced in [28]).

2 Preliminaries

We denote the security parameter by κ and the number of parties by n. We denote by [n] the set
{1, . . . , n}.

2.1 The ECDSA Signing Algorithm

The ECDSA signing algorithm is defined as follows. Let G be an Elliptic curve group of order q
with base point (generator) G. The private key is a random value x ← Zq and the public key is
Q = x ·G. ECDSA signing on a message m ∈ {0, 1}∗ is defined as follows:

1. Compute m′ to be the |q| leftmost bits of SHA256(m), where |q| is the bit-length of q. Denote
this operation by Hq(m).

2We remark that offline solutions requiring physical presence of representatives of both the bank and the customer,
as could be achieved using physically protected HSMs, are not viable due to the requirement of fast transfer in case
of a cryptocurrency crash.

4

2. Choose a random k ← Z∗q

3. Compute R← k ·G. Let R = (rx, ry).

4. Compute r = rx mod q and s← k−1 · (m′ + r · x) mod q.

5. Output (r, s)

It is a well-known fact that for every valid signature (r, s), the pair (r,−s) is also a valid signature.
In order to make (r, s) unique (which will help in formalizing security), we mandate that the
“smaller” of {s,−s} is always output (where the smaller is the value between 0 and q−1

2). We
denote (r, s)← Sign(x,m) to be the signing algorithm, and Verify(Q,m, (r, s)) to be the verification
procedure (that outputs 0 for “invalid” and 1 for “valid”).

2.2 ElGamal in the Exponent

Let G denote a group of order q where the DDH assumption is assumed to be hard, and let G be
a generator of the group. We will use addition as the group operation, upper-case characters for
group elements, and lower-case characters for scalars in Zq. This is consistent with Elliptic curve
notation, although all of our protocols work equivalently in finite field groups.

We utilize ElGamal decryption “in the exponent”. An encryption of a value m ∈ Zq with public
key P ∈ G is denoted EGexpEncP(m), and is formally defined by

EGexpEncP(m) = (A,B) = (r ·G, r · P +m ·G),

where r ← Zq is random. When we wish to specify the randomness in the encryption, we denote the
above by EGexpEncP(m; r). Note that m is not actually in the exponent here, but this is the name
used since when using multiplicative group notation (as in finite fields), a ciphertext is (gr, hr ·gm),
in which case m is in the exponent.

Observe that this encryption is additively homomorphic. Specifically, two ciphertexts (A,B)
and (C,D) can be added by computing (A+C,B+D). If (A,B) = (r ·G, r ·P+m ·G) and (C,D) =
(s·G, s·P+m′ ·G) then (A+C,B+D) = ((r+s)·G, (r+s)·P+(m+m′)·G) = EGexpEncP(m+m′).
In addition, multiplication of a ciphertext (A,B) = (r ·G, r · P +m ·G) by a scalar c is computed
by (c ·A, c ·B) = ((c · r) ·G, (c · r) · P + (c ·m) ·G) = EGexpEnc(c ·m). This can be combined with
rerandomization by computing (c ·A+ s ·G, c ·B+ s ·P) = ((c · r+ s) ·G, (c · r+ s) · P + (c ·m′) ·G),
which is a “fresh” random encryption of c ·m′. We stress that ElGamal in-the-exponent is not a
valid encryption scheme since decryption requires solving the discrete log problem. In particular,
given d where P = d ·G and EGexpEncP(m), it is possible to efficiently compute m ·G. The next
step of computing m requires solving the discrete log, and so can only be achieved if m is relatively
small.

2.3 Private Multiplication

Our protocol for secure multiplication utilizes a subprotocol πprivmult that computes the product of
additive shares with privacy but not correctness. Specifically, we consider the multiplication func-
tionality defined by f((a1, b1), . . . , (an, bn)) = (c1, . . . , cn), where the output values c1, . . . , cn are
random under the constraint that

∑n
`=1 c` = (

∑n
`=1 a`) · (

∑n
`=1 b`) mod q, where q is a large prime

(say, 256 bits). We require that the protocol for computing f be private in the presence of malicious

5

adversaries; this means that the adversary cannot learn anything more than allowed, but correct-
ness is not guaranteed. This is actually problematic to define, since the adversary receives output,
and thus saying that it learns nothing more than allowed would typically require an ideal-model
type of definition. However, since the outputs of the parties are random in Zq under the constraint,
nothing is revealed unless the shares are reconstructed. We therefore require the following two
properties (let I ⊆ [n] denote the set of corrupted parties and let J = [n] \ I denote the set of
honest parties):

1. Privacy: For any probabilistic polynomial-time adversary malicious A running the protocol,
and any two sets of inputs {(aj , bj)}j∈J and {(a′j , b′j)}j∈J for the honest parties, the view of A
(including its input, randomness, message transcript and output shares {ci}i∈I) when executing
the protocol with honest parties using inputs {(aj , bj)}j∈J is computationally indistinguishable
from its view when executing the protocol with honest parties using inputs {(a′j , b′j)}j∈J .

2. Input indistinguishability: Define an implicit-input function on the views of all parties in the
execution; this function outputs the implicit inputs of the adversary so that the output of the
protocol is the function being computed applied to these implicit adversary inputs and the honest
parties’ inputs. Then, input indistinguishability requires that for any probabilistic polynomial-
time adversary malicious A running the protocol, and any two sets of inputs {(aj , bj)}j∈J and
{(a′j , b′j)}j∈J for the honest parties, if the output of the function applied toA’s implicit inputs and
{(aj , bj)}j∈J equals the output of the function applied to A’s implicit inputs and {(a′j , b′j)}j∈J ,
then A’s view is indistinguishable even given c1, . . . , cn. This notion was formally defined in [30]
in order to achieve concurrent security, but can also be applied to other settings.

Observe that the first property mandates privacy irrespective of what inputs are used by the parties
and irrespective of A’s strategy. However, this only holds as long as the shares are not reconstructed
to obtain

∑n
`=1 c`, since indistinguishability is trivially impossible in such a case. Thus, the second

property guarantees that if two sets of inputs result in the same output, then the views of A
even given

∑n
`=1 c` are indistinguishable. Thus, as long as the output is only reconstructed when

the output is correct, the protocol guarantees full privacy. Our protocol for secure multiplication
(used to compute ECDSA) will ensure this exact property; the output of the private multiplication
is securely verified against encrypted and validated values, and the result is only revealed if it is
correct. We stress that we require input indistinguishability of multiplication for the result of the
multiplication modulo q.

We show how private multiplication can be instantiated in Section 6. One instantiation is
based on oblivious transfer and has low computation cost but higher bandwidth, while our second
instantiation is based on Paillier encryption and has higher computation cost but much lower
bandwidth.

3 Definition of Security

3.1 The ECDSA Ideal Functionality

We show how to securely compute the functionality Fecdsa. The functionality is defined with two
functions: key generation and signing. The key generation is called once, and then any arbitrary
number of signing operations can be carried out with the generated key. The functionality is defined
in Figure 3.1.

6

FUNCTIONALITY 3.1 (The ECDSA Functionality Fecdsa)

Functionality Fecdsa works with parties P1, . . . , Pn, as follows:

• Upon receiving KeyGen(G, G, q) from all parties P1, . . . , Pn, where G is an Elliptic-curve group
of order q with generator G:

1. Generate an ECDSA key pair (Q, x) by choosing a random x ← Z∗q and computing
Q = x ·G. Then, store (G, G, q, x).

2. Send Q to all P1, . . . , Pn.

3. Ignore future calls to KeyGen.

• Upon receiving Sign(sid,m) from all P1, . . . , Pn, if KeyGen was already called and sid has not
been previously used, compute an ECDSA signature (r, s) on m, and send it to all P1, . . . , Pn.
(Specifically, choose a random k ← Z∗q , compute (rx, ry) = k · G, r = rx mod q, and s′ ←
k−1(Hq(m) + r · x). Then, set s = min{s′, q − s′} so that the signature (r, s) always has
s < q/2.)

We defined Fecdsa using Elliptic curve (additive) group notation, although all of our protocols
work for any prime-order group.

3.2 Security Model

Security in the presence of malicious adversaries. We prove security according to the stan-
dard simulation paradigm with the real/ideal model [5, 23], in the presence of malicious adversaries
and static corruptions. As is standard for the case of no honest majority, we consider security with
abort meaning that a corrupted party can learn output while the honest party does not. In our
definition of functionalities, we describe the instructions of the trusted party. Since we consider se-
curity with abort, the ideal-model adversary receives output first and then sends either (continue, j)
or (abort, j) to the trusted party, for every j ∈ [n] to instruct the trusted party to either deliver
the output to party Pj (in case of continue) or to send abort to party Pj . This means that honest
parties either receive the correct output or abort, but some honest parties may receive output
while others abort. This was termed non-unanimous abort in [24]. As described in Section 5 (after
Protocol 5.1), in this case of secure signing, it is easy to transform the protocol so that all parties
receive output if any single honest party received output.

We remark that when all of the zero-knowledge proofs are UC secure [6], then our protocol can
also be proven secure in this framework.

Security, the hybrid model and composition. We prove the security of our protocol in a
hybrid model with ideal functionalities that securely compute Fcom,Fzk,Fcom-zk, defined next in
Section 3.3. The soundness of working in this model is justified in [5] (for stand-alone security) and
in [6] (for security under composition). Specifically, as long as subprotocols that securely compute
the functionalities are used (under the definition of [5] or [6], respectively), it is guaranteed that
the output of the honest and corrupted parties when using real subprotocols is indistinguishable to
when calling a trusted party that computes the ideal functionalities.

7

3.3 Ideal Functionalities

As in [28] and [13], we prove the security of our protocol using the ideal zero-knowledge functionality,
denoted Fzk, and an ideal commit-and-prove functionality, denoted Fcom-zk. In practice, these proofs
are instantiated using Fiat-Shamir on highly efficient Sigma protocols. In this section, we define
these ideal functionalities, and the relations for the zero-knowledge proofs.

The ideal commitment functionality Fcom. In order to realize Fcom-zk defined below, we use
an ideal commitment functionality Fcom, formally defined in Functionality 3.2. Any UC-secure
commitment scheme fulfills Fcom; e.g., [27, 1, 16]. In the random-oracle model, Fcom can be
trivially realized with static security by simply defining Com(x) = H(x, r) where r ← {0, 1}κ
is random, and sending Com(x) to all parties. Since Fcom is defined so that all parties receive
the same commitment, the value Com(x) needs to be broadcasted. However, as shown in [24],
a simple echo-broadcast suffices here for the case of non-unanimous abort (this takes two rounds
of communication). In order to ensure this, the parties send a hash of all the commitments that
they received in the round after the commitments were sent. If any two parties received different
commitments, then they notify all parties to abort and then halt. This adds very little complexity
and ensures the same view for any committed values.

FUNCTIONALITY 3.2 (The Commitment Functionality Fcom)

Functionality Fcom works with parties P1, . . . , Pn, as follows:

• Upon receiving (commit, sid, i, x) from party Pi (for i ∈ [n]), record (sid, i, x) and send
(receipt, sid, i) to all P1, . . . , Pn. If some (commit, sid, i, ∗) is already stored, then ignore the
message.

• Upon receiving (decommit, sid, i) from party Pi, if (sid, i, x) is recorded then send
(decommit, sid, i, x) to party P1, . . . , Pn.

The ideal zero knowledge functionality Fzk. We use the standard ideal zero-knowledge func-
tionality defined by ((x,w), λ)→ (λ, (x,R(x,w))), where λ denotes the empty string. For a relation
R, the functionality is denoted by FRzk. Note that any zero-knowledge proof of knowledge fulfills the
Fzk functionality [25, Section 6.5.3]; non-interactive versions can be achieved in the random-oracle
model via the Fiat-Shamir paradigm; see Functionality 3.3 for the formal definition.

FUNCTIONALITY 3.3 (The Zero-Knowledge Functionality FRzk for Relation R)

Upon receiving (prove, sid, i, x, w) from a party Pi (for i ∈ [n]): if sid has been previously used
then ignore the message. Otherwise, send (proof, sid, i, x,R(x,w)) to all parties P1, . . . , Pn, where
R(x,w) = 1 iff (x,w) ∈ R.

We define Sigma protocols for five languages; these can be compiled to zero-knowledge proofs
of knowledge in the standard manner. Namely, for non-interactive zero-knowledge in the random-
oracle model, the Fiat-Shamir paradigm [14] can be used, whereas standard techniques using effi-
cient commitments can be used to obtain proofs in the standard model with interaction. We define
the following relations:

8

1. Knowledge of the discrete log of an Elliptic-curve point: Define the relation

RDL = {(G, G, q,P, w) | P = w ·G}

of discrete log values (relative to the given group). We use the standard Schnorr proof for
this [32]. The cost of this proof is one exponentiation for the prover and two for the verifier, and
communication cost of two elements of Zq.

2. Diffie-Hellman tuple of Elliptic-curve points: Define the relation

RDH = {(G, G, q, (A,B,C), w) | B = w ·G ∧ C = w ·A}

of Diffie-Hellman tuples (relative to the given group). We use the well-known proof that is an
extension of Schnorr’s proof for discrete log. The cost of this proof is two exponentiations for
the prover and four for the verifier, and communication cost of two elements of Zq.

3. Rerandomization of tuple: Define the rerandomization relation

RRE = {(G, G, q, (P, A,B,A′, B′), (r, s)) | A′ = r ·G+ s ·A ∧ B′ = r · P + s ·B}.

Observe that if (G,P, A,B) is a Diffie-Hellman tuple, then (G,P, A′, B′) is a uniformly dis-
tributed and independent Diffie-Hellman tuple (with the same G,P). In contrast, if (G,P, A,B)
is not a Diffie-Hellman tuple, then A′, B′ are uniform and independent random group elements.
See Eq. Eq. (1) in the proof of Theorem B.1 for a proof of this fact. The Sigma protocol for
this relation is described in Appendix A.1; the cost of this proof is four exponentiations for the
prover and six for the verifier, and communication cost of three elements of Zq.

4. Knowledge of x in EGexpEncP(x): we define the relation

REG = {((G, G, q,P, A,B), (x; r)) | (A,B) = EGexpEncP(x; r)}

of the encrypted value in an ElGamal encryption-in-the-exponent ciphertext. Note that this is
very different from knowing a regular ElGamal plaintext since here x is “in the exponent”, and
the knowledge extractor must be able to extract x itself (and not just x ·G). The Sigma protocol
for this relation is described in Appendix A.2; the cost of the proof is three exponentiations for
the prover and five for the verifier, and communication cost of three elements of Zq.

5. Scalar product with encrypted values: we define the relation

Rprod = {((G, G, q,P, A,B,C,D,E, F), (t, r, y)) |
(C,D) = EGexpEncP (y; t) ∧ E = y ·A+ r ·G ∧ F = y ·B + r · P}

which means that (E,F) is generated by multiplying (A,B) by the scalar y which is encrypted-
in-the-exponent in (C,D), and then rerandomizing the result. The Sigma protocol for this
relation is described in Appendix A.3; the cost of this proof is eleven exponentiations for the
prover and twelve for the verifier, and communication cost of six elements of Zq.

For clarity, we remove the (G, G, q) part from the input to the zero-knowledge proofs below, with
the understanding that these parameters are fixed throughout.

9

The committed non-interactive zero knowledge functionality Fcom-zk. In our protocol, we
will have parties send commitments to a statement together with a non-interactive zero-knowledge
proof of the statement. As in [28], we model this formally via a commit-zk functionality, denoted
Fcom-zk, defined in Functionality 3.4. Given non-interactive zero-knowledge proofs of knowledge,
this functionality is securely realized by just having the prover commit to the statement together
with its proof, using the ideal commitment functionality Fcom. As in Fcom, consistency of views is
validated by all parties sending a hash of the commitments that they received.

FUNCTIONALITY 3.4 (The Committed NIZK Functionality FRcom-zk for Relation R)

Functionality Fcom-zk works with parties P1, . . . , Pn, as follows:

• Upon receiving (ComProve, sid, i, x, w) from a party Pi (for i ∈ [n]): if sid has been previously
used then ignore the message. Otherwise, store (sid, i, x) and send (ProofReceipt, sid, i) to
P1, . . . , Pn.

• Upon receiving (DecomProof, sid) from a party Pi (for i ∈ [n]): if (sid, i, x) has been stored
then send (DecomProof, sid, i, x,R(x,w)) to P1, . . . , Pn.

4 Secure Multiplication – Fmult

4.1 Functionality Definition

A basic multiplication functionality (from additive shares) can be defined by having each party Pi
provide ai and bi for input, and then returning ci to party Pi, where c1, . . . , cn are random under
the constraint that

∑n
`=1 c` = (

∑n
`=1 a`) · (

∑n
`=1 b`) mod q

We will actually need an extended version of this multiplication functionality, where the value
a · G is also returned to the parties, where a =

∑n
`=1 a` ((G, G, q) denotes the description of a

group of order q, with generator G). Although this looks “out of place”, this additional value can
be computed efficiently while computing Fmult. For this reason, we combine them together. In
addition, in our protocol, we need to enable multiplication with the same value more than once.
This is achieved by having an “input” command, and then enabling multiplications between inputs.
Finally, we define the functionality for random input shares only for the honest parties, whereas
corrupted parties can choose their own shares.3 This is needed in our proof of security (see Game 2
in the proof of Theorem B.1) and is anyway the way the functionality is used in order to securely
compute ECDSA. Finally, we add a local affine transformation on an encrypted/shared input, that
is needed for computing ECDSA. This is a local operation only, and so is formalized by the honest
parties providing these values. See Functionality 4.1 for the specification of Fmult that we use in
our protocol.

Observe that Fmult as described here is not a “standard” multiplication functionality and is
tailored to what we need for securely computing Fecdsa. Arguably, as such, one should call it
an ECDSA helper functionality. However, since it’s main operation (and most difficult one) is
multiplications, we call it extended multiplication.

3As such, the functionality is “corruption aware”, meaning that it behaves differently for honest parties and
corrupted parties. This is standard in ideal-model formalizations.

10

FUNCTIONALITY 4.1 (The Extended Multiplication Functionality Fmult)

The functionality Fmult is given the set of indices of corrupted parties C ⊆ [n], and works with
parties P1, . . . , Pn as follows:

• Upon receiving (init,G, G, q) from all parties, Fmult stores (G, G, q). If some (G, G, q) has
already been stored, then ignore the message.

• Upon receiving (input, sid, ai) from a party Pi with i ∈ C, if no value (sid, i, ·) value is stored,
then Fmult stores (sid, i, ai). Else, the message is ignored.

• Upon receiving (input, sid) from a party Pi with i /∈ C, if no value (sid, i, ·) value is stored, then
Fmult chooses a random ai ← Zq, returns (input, sid, ai) to Pi, and stores (sid, i, ai). Else, the
message is ignored.

• If some (sid, i, ai) has been stored for all i ∈ [n] then Fmult computes a =
∑n
`=1 a` mod q, stores

(sid, a) and sends (input, sid) to all parties.

• Upon receiving (mult, sid1, sid2) from all parties, Fmult checks that some (sid1, a) and (sid2, b)
values have been stored. If yes, then Fmult sets c = a ·b mod q and sends (mult-out, sid1, sid2, c)
to all parties.

• Upon receiving (affine, sid1, sid2, x, y) from the honest parties with x, y ∈ Zq, functionality
Fmult checks that some (sid1, a) has been stored. If yes, Fmult computes b = a · x + y mod q,
stores (sid2, b), and sends (affine, sid1, sid2, x, y) to A.

• Upon receiving (element-out, sid) from all parties, functionality Fmult checks that some (sid, a)
has been stored. If yes, Fmult computes A = a ·G and sends (element-out, sid,A) to all parties.
In addition, Fmult sends A1, . . . , An to the ideal adversary, where Ai = ai ·G (with ai as received
in input for sid).

4.2 Checking Diffie-Hellman Tuples

In order to securely compute Fmult, one step involves the parties securely checking that a tuple
(G,P, U, V) is a Diffie-Hellman tuple or not. As part of the initialization of Fmult, each party
has a share di such that P = d · G, with d =

∑n
`=1 d`. Thus, (G,P, U, V) is a Diffie-Hellman

tuple if and only if V = d · U . This can be verified by the parties each sending Ui = di · U to
each other, and then all parties simply check that V =

∑n
`=1 Ui. However, this will not be secure

since we require that nothing be learned if the input is not a Diffie-Hellman tuple, and
∑n

`=1 Ui
reveals the value T such that (G,P, U, V − T) is a Diffie-Hellman tuple. Thus, the parties first
each rerandomize the tuple and then continue as above. This is rather standard, and the full
specification is therefore deferred to Section 7. We remark that as part of the protocol, the parties
need to verify values using P1, . . . ,Pn such that Pi = di ·G for every i ∈ [n]. (In our multiplication
protocol, these values are learned in the initialization phase.) We define the ideal functionality
FcheckDH in Functionality 4.2, and show how to securely compute it in Section 7. The cost of
securely computing FcheckDH is 11 + 10(n− 1) group exponentiations per party, each party sending
7 group elements (or equivalent) to each other party, and 3 rounds of communication.

11

FUNCTIONALITY 4.2 (FcheckDH - Check DH Tuple)

FcheckDH runs with parties P1, . . . , Pn, as follows:

1. Upon receiving (init, i,Pi, di) from party Pi, FcheckDH verifies that Pi = di ·G. If not, it sends
abort to all parties. Otherwise, it stores {P1, . . . ,Pn} and sends {P1, . . . ,Pn} to all parties.

2. Upon receiving (check, i, U, V, di) from party Pi for every i ∈ [n], FcheckDH verifies that Pi =
di · G for all i ∈ [n] and that V = d · U where d =

∑n
`=1 d` mod q. If all conditions were

satisfied, FcheckDH sends accept to all the parties. Otherwise, it sends reject to all parties.

4.3 Securely Computing Fmult

We describe separate subprotocols for init, input, element-out, affine and mult. We remark that init
must be called first, and all other calls to Fmult are ignored until init is completed. In our description
of the protocol, each round is structured as follows: (a) each party receives the messages sent by
the other parties and/or ideal functionalities in the previous round, (b) each party carries out local
computation, and (c) each party sends the messages from this round to other parties and/or to
ideal functionalities.

Init: The init procedure is used to generate an ElGamal (in-the-exponent) public key P, with each
party holding shares d1, . . . , dn of the private key (meaning that

∑n
`=1 d` = d where P = d · G).

In addition to each party storing its share di of the private key, and the public key P, the parties
also store all values P1, . . . ,Pn where Pi = di ·G. These latter values are used inside the protocol
for FcheckDH in order to enforce the parties to use their correct value di. Specifically, if a party is
supposed to compute Y = di ·X for some value X, then it can prove that it behaved honestly by
proving that (G, X,Pi, Y) is a Diffie-Hellman tuple (since Pi = di · G and Y = di ·X). Thus, the
parties need to have stored Pi.

The protocol for init is basically a type of simulatable coin tossing. In the first round, each
party generates a value Pi = di · G and prepares a zero-knowledge proof of knowledge of di, and
commits to the value and proof. Then, in the second round, the parties decommit. Finally, P is set
to be the sum of all Pi. This is simulatable in the ideal commitment hybrid model using standard
simulation techniques. See Protocol 4.3 for a full specification.

Input: The input procedure is used to generate an ElGamal in-the-exponent encryption of a =∑n
`=1 ai mod q, where each Pi chooses ai; the honest parties choose ai randomly whereas the cor-

rupted parties can choose ai as they wish (as prescribed in Fmult). In order to prevent the corrupted
parties from making their ai values dependent on the honest parties’ values (and thus influencing
the result a), each party encrypts its ai and provides a zero-knowledge proof of knowledge of the
encrypted value. The parties generate an encryption of a by using the additively homomorphic
properties of ElGamal in the exponent. In addition to storing the final ciphertext, they store each
party’s encryption and this is used to enforce correct behavior later. See Protocol 4.4 for a full
specification.

12

PROTOCOL 4.3 (Initialization Subprotocol of Fmult)

Upon joint input (init,G, G, q), number of parties n, and a unique session identifier sid, the parties

run any initialization steps needed for πpriv
mult (e.g., base oblivious transfers). In parallel, each party

Pi works as follows:

1. Round 1: Party Pi chooses a random di ← Zq, and computes Pi = di · G. Then, Pi sends

(ComProve, init, i,Pi, di) to FRDL

com-zk (i.e., Pi sends a commitment to Pi and a POK of its discrete
log).

2. Round 2: Upon receiving (ProofReceipt, init, j) from FRDL

com-zk for every j ∈ [n], party Pi sends

(DecomProof, init, i) to FRDL

com-zk. In addition, Pi sends (init, i,Pi, di) to FcheckDH.

3. Output: Pi receives (DecomProof, init, j,Pj , βj) from FRDL

com-zk for every j ∈ [n], and receives
(P1, . . . ,Pn) from FcheckDH. If some βj = 0 (meaning that a proof is not valid), or the

Pj values received from FRDL

com-zk do not match the Pj values received from FcheckDH then it
aborts. Otherwise, Pi locally computes the ElGamal public-key P =

∑n
`=1 P` and stores

(di,P, {P`}n`=1).

PROTOCOL 4.4 (Input Subprotocol of Fmult)

Upon input (input, sid, ai) to Pi for all i ∈ [n], each party Pi works as follows:

1. Round 1: Pi chooses a random si ← Zq and computes (Ui, Vi) = EGexpEncP(ai; si). Then, Pi
sends (proof, sid, i, (P, Ui, Vi), (ai, si)) to FREG

zk .

2. Output: Pi receives (proof, sid, j, (P, Uj , Vj), βj) from FREG

zk , for every j ∈ [n]\{i}. If some
βj = 0, then Pi aborts. Otherwise, Pi computes U =

∑n
`=1 U` and V =

∑n
`=1 V` and stores

(sid, (U, V), ai, si, {(U`, V`)}n`=1).
Pi outputs (input, sid).

In the point-to-point model, it is necessary for the parties to ensure that they all received the
same input. This is achieved by sending hashes of all received ciphertexts (U1, V1), . . . , (Un, Vn)
after receiving output. This can be done in parallel to the continuation of the protocol, and we
therefore do not add it as a separate round.

Get Element: As defined in the Fmult ideal functionality, the element-out procedure is used by
the parties to obtain A = a · G for a value a that was input. Recall that in order to get input
a, each party Pi encrypted ai and the sum of all of these values equal a. As such, all that is
needed here is for each party Pi to provide Ai = ai · G and prove that this is generated using
the same value ai as was encrypted in the input phase. Recall that the parties store each party’s
encryption (Ui, Vi) of ai, meaning that Ui = si · G and Vi = si · P + ai · G. However, this means
that (G,P, Uj , Vj−Aj) = (G,P, si ·G, si ·P) and so is a Diffie-Hellman tuple. Thus, Pi can provide
Ai and prove that it provided the correct Ai very efficiently by sending a zero-knowledge proof
of a Diffie-Hellman tuple. The final value A is obtained easily by summing all Ai values. See
Protocol 4.5 for a full specification.

13

PROTOCOL 4.5 (Element-Out Subprotocol of Fmult)

Upon input (element-out, sid), if Pi has some (sid, (U, V), ai, si, {(U`, V`)}n`=1) stored, then it pro-
ceeds as follows (otherwise it ignores the input):

1. Round 1: Pi computes Ai = ai · G, and sends Ai to Pj for all j ∈ [n] \ {i}, and sends

(proof, sid, i, (G,P, Ui, Vi −Ai), si) to FRDH

zk .

2. Output: Pi receives (proof, sid, j, (G,P, Uj , Vj −Aj), βj) from FRDH

zk , for all j ∈ [n]\{i}. If
some βj = 0, then Pi aborts. Otherwise, Pi computes A =

∑n
`=1A`. Then, Pi outputs

(element-out, sid,A).

Affine: The affine procedure merely involves scalar multiplication and scalar addition to a given
ciphertext. Since ElGamal in-the-exponent is additively homomorphic, these operations can be
easily carried out on any value that was input. We remark that since the parties store their local
shares and randomness in all input values, and the encryptions of all the parties’ shares, these must
also be adjusted. However, this is also straightforward using the same homomorphic operations.
See Protocol 4.6 for a full specification.

PROTOCOL 4.6 (Affine Subprotocol of Fmult)

Upon input (affine, sid1, sid2, x, y), if Pi has some (sid1, (U, V), ai, si, {(U`, V`)}n`=1) stored and
sid2 has not yet been used, then it proceeds as follows (otherwise it ignores the input):

1. Pi locally computes U ′ = x · U and V ′ = x · V + y ·G, for all ` ∈ [n] it computes U ′` = x · U`
and V ′` = x · V` + y

n ·G. Then, Pi stores
(
sid2, (U

′, V ′), ai · x+ y
n , x · si, {(U

′
`, V

′
`)}n`=1

)
.

Mult: The main procedure of Fmult is the multiplication procedure, and this is also the most
involved. The idea behind the protocol is as follows. From the input procedure, each party holds
and encryption (X,Y) of b, along with encryptions (U1, V1), . . . , (Un, Vn) of a1, . . . , an, respectively.
In addition, each party knows its own share ai. As a result, it is possible for each party Pi to use
scalar multiplication on ElGamal in-the-exponent ciphertexts in order to generate an encryption of
ai · b. In addition, each party proves in zero-knowledge that the ciphertext was generated in this
way. This proof can be carried since each party already holds an encryption of ai and b, and so this
is a well-defined NP-statement. In addition, due to the clean properties of ElGamal, the proof is
very efficient; see Section A.3. By summing all of these resulting ciphertexts, the parties obtain an
encryption of a · b mod q that is provably a · b and nothing else (due to the zero-knowledge proofs).
Unfortunately, since the encryption is ElGamal in-the-exponent, the parties cannot decrypt, since
this would yield (a · b) · G and not a · b mod q. Thus, in parallel to the above, the parties run
a private multiplication subprotocol πprivmult that is not necessarily correct. In addition, nothing
forces the parties from inputting the correct ai, bi values. However, given that they hold a proven
encryption of a · b, and now hold shares c1, . . . , cn that are supposed to sum to a · b, they can reveal
these shares to each other and verify their correctness against the proven encrypted value. This
is the main observation that enables us to replace Paillier encryption used in previous protocols
with ElGamal in the exponent. The actual implementation of this is more difficult since the parties
cannot reveal c1, . . . , cn until after they have verified that the values are correct, or else this can leak

14

private information of the honest parties. This therefore requires a method of verifying equality
without revealing anything.

PROTOCOL 4.7 (Mult Subprotocol of Fmult)

Upon input (mult, sid1, sid2), if Pi has some (sid1, (U, V), ai, si, {(U`, V`)}n`=1) and some
(sid2, (X,Y), bi, ti, {(X`, Y`)}n`=1) stored, then it defines sid = sid1‖sid2 and proceeds as follows
(otherwise it ignores the input):

0. In parallel to the below, the parties run a private multiplication protocol πpriv
mult. Party Pi inputs

(ai, bi); denote Pi’s output by ci. (In fact, this can even be run in parallel to (input, sid1, ai)
and/or (input, sid2, bi).)

1. Round 1:

(a) Pi chooses a random s′i and computes

(Ei, Fi) = (ai ·X + s′i ·G, ai · Y + s′i · P).

(b) Pi sends (proof, sid, i, (P, X, Y, Ui, Vi, Ei, Fi), (si, s
′
i, ai)) to FRprod

zk , and sends (Ei, Fi) to all
parties.

2. Round 2:

(a) Pi receives (proof, sid, j, (P, X, Y, Uj , Vj , Ej , Fj), βj) from FRprod

zk , for all j ∈ [n]\{i}. If
some βj = 0 (meaning that a proof is not valid), then it aborts.

(b) Pi sets (E,F) = (
∑n
`=1E`,

∑n
`=1 F`).

(c) Pi chooses a random ŝi ← Zq and computes (Ai, Bi) = EGexpEncP(ci; ŝi), where ci is its

output from πpriv
mult.

(d) Pi sends (proof, sid, i, (P, Ai, Bi), (ci, ŝi)) to FREG

zk , and sends (Ai, Bi) to all parties.

3. Round 3:

(a) Pi receives (proof, sid, j, (P, Aj , Bj), β′j) from FREG

zk , and (Aj , Bj) from Pj , for every
j ∈ [n]\{i}. If some β′j = 0, then Pi aborts.

(b) Pi computes A = E −
∑n
`=1A` and B = F −

∑n
`=1B`.

(c) Pi sends (check, i, A,B, di) to FcheckDH.

4. Round 4:

(a) If Pi receives reject from FcheckDH, then it aborts.

(b) Pi sends (proof, sid, i, (P, Ai, Bi − ci ·G), ŝi) to FRDH

zk , and sends ci to all parties.

5. Output: Pi receives (proof, sid, j, (P, Aj , Bj−cj ·G), β′′j) from FRDH

zk , and cj from Pj , for every
j ∈ [n]\{i}. If some β′′j = 0 (where Pi verifies the proof using the cj value received here, and

Aj , Bj from Step 3a), then Pi aborts. Otherwise, Pi computes c =
∑n
`=1 c` mod q and outputs

c.

We achieve this by having each party encrypt its ci value; the parties then sum these encryptions
together and subtract the result from the proven encryption of a · b. If the ci values were correct,
then this would become an encryption of 0; stated differently, the result would be a Diffie-Hellman

15

tuple. Thus, the parties run a subprotocol that checks if a tuple is a Diffie-Hellman tuple without
revealing anything else. Informally, this is achieved by each party rerandomizing the tuple so that
if it is a Diffie-Hellman then it remains one, but if it is not then it becomes purely random. This
subprotocol is formalized in the FcheckDH functionality and presented in Section 7. Finally, if the
check passes, then the parties can send ci to each other, sum the result and output it. Of course, this
last step must also be verified, but this is easy to do since the parties already provided encryptions
of ci in order to check the result, and they can therefore prove that the ci provided is the one that
they previously encrypted.

The full proof of security of Protocols 4.3–4.7 is presented in Appendix B and follows the
intuition given above.

5 Securely Computing ECDSA

In this section, we present our protocol for distributed ECDSA signing. We separately describe the
key generation phase (which is run once) and the signing phase (which is run multiple times). In
the description of the protocol, we denote by Pi the party carrying out the instructions, by Pj the
other parties, and we use ` as a running index from 1 to n.

5.1 The Protocol for Fecdsa
Given Fmult, it is very easy to construct a protocol for securely computing Fecdsa. In particular,
Fmult provides the ability to securely multiply values together. Thus, it is possible for the parties
to choose random xi, ki values (to define x =

∑n
`=1 xi and k =

∑n
`=1 ki) and use Fmult to obtain

R = k ·G (using element-out), to compute H(m) + r · x mod q using affine, and finally to multiply
this with k to obtain k · (H(m) + r · x) mod q. (Note that all operations are modulo q already and
so all computations are correct.) However, this is not the computation needed! Rather, ECDSA
signing requires computing k−1·(H(m) + r · x), with k-inverse. Note that Fmult does not enable
securely inverting an element that was input, and this is not an operation that is typically efficient
in MPC. We overcome this problem by having the parties input an addition random masking
element ρ and then use mult to reveal τ = ρ · k. Given this value in the clear, each party can
locally compute τ−1 = ρ−1 · k−1. In addition, the parties can use mult a second time to compute
β = ρ · (H(m) + r · x). The key observation is that the product of these values β and τ−1 (which
party can locally compute) is exactly ρ−1 · k−1 · ρ · (H(m) + r · x) = k−1 · (H(m) + r · x) which is
the s-part of a valid signature. By using Fmult, all of the above operations are guaranteed to be
correct, and so the adversary cannot cheat. In addition, since ρ is random, the values τ and β reveal
nothing more than the signature; as we will show, they are random values under the constraint
that β

τ equals the valid signature. This can therefore be simulated.
We remark that key generation here merely involves running init for Fmult and input for values

x1, . . . , xn in order to define a random x that is the ECDSA private key. By calling element-out, the
parties also obtain Q = x ·G which is the ECDSA public key. As such, distributed key generation
is very efficient, and scales easily to a large number of parties.

Observe also that all operations in Fmult are modulo q, where q is the order of the ECDSA
group itself, by the fact that we use ElGamal in-the-exponent over the same Elliptic curve as
defined for the signing algorithm. This significantly simplifies the protocol. See Protocol 5.1 for a
full specification.

16

PROTOCOL 5.1 (Securely Computing Fecdsa)

Auxiliary input: Each party has the description (G, G, q) of a group, and the number of parties
n.

Key generation: Upon input KeyGen(G, G, q), each party Pi works as follows:

1. Pi sends (init,G, G, q) to Fmult to run the initialization phase.

2. Pi sends (input, sidgen) to Fmult, and receives back (input, sidgen, xi). (Denote x =
∑n
`=1 x`

and Q = x ·G.)

3. Pi waits to receive (input, 0) to Fmult.

4. Pi sends (element-out, 0) to Fmult.

5. Pi receives (element-out, 0, Q) from Fmult.

6. Output: Pi locally stores Q as the ECDSA public-key.

Signing: Upon input Sign(sid,m), where sid is a unique session id sid, each party Pi works as
follows:

1. Pi sends (input, sid‖1) and (input, sid‖2) to Fmult, and receives back (input, sid‖1, ki) and
(input, sid‖2, ρi). (Denote k =

∑n
`=1 k` and ρ =

∑n
`=1 ρ`.)

2. After receiving (input, sid‖1) and (input, sid‖2) from Fmult, Pi sends (mult, sid‖1, sid‖2) and
(element-out, sid‖1) to Fmult.

3. Pi receives (mult-out, sid‖1, sid‖2, τ) and (element-out, sid‖1, R) from Fmult (note that τ = k ·ρ
and R = k ·G).

4. Pi computes R = (rx, ry) and r = rx mod q.

5. Pi sends (affine, 0, sid‖3, r,m′) to Fmult (recall that identifier 0 is associated with the private-
key x, and thus sid‖3 will be associated with m′ + x · r mod q).

6. Pi sends (mult, sid‖2, sid‖3) to Fmult.

7. Pi receives (mult-out, sid‖2, sid‖3, β) from Fmult (note that β = ρ · (m′ + x · r) mod q).

8. Pi computes s′ = τ−1 · β mod q and s = min{s, q − s}.

9. Output: Pi outputs (r, s).

Output to all parties. As we have described above, our protocol as described is not secure with
unanimous abort, since some honest parties may abort while others receive output. However, in
this case of ECDSA signing, it is easy to transform the protocol so that if one honest party receives
output then so do all. This is achieved by having any party who receives (r, s) as output send it to
all other parties. Then, if a party who otherwise aborted receives (r, s), it can check that (r, s) is
a valid signature on m and output it if yes.

Correctness. In order to validate correctness, observe that τ is the product of k =
∑n

`=1 ki and
ρ =

∑n
`=1 ρi, and that β is the product of the same ρ with α =

∑n
`=1 αi. Furthermore, R = k ·G

for the same k as above. Given the above, and noting that αi = m′

n + xi · r, it follows that
s′ = τ−1 · β = k−1 · ρ−1 · ρ · α = k−1 · (m′ + x · r), where r = rx mod q for R = k · G = (rx, ry).
Thus, (r, s) is a valid ECDSA signature with private-key x =

∑n
`=1 xi.

17

Security. Since Fmult is used for all the operations, the adversary cannot deviate from the protocol
at all. Thus, all that is required is to show that the τ and β values revealed leak no information
beyond the signature itself. This follows from the fact that ρ is random. We show this formally in
the proof of security in Section 5.3.

Assumptions. As pointed out in [13], requiring Paillier as an additional assumption for ECDSA
signing can be viewed as a disadvantage. If this is a concern, then the private multiplication protocol
πprivmult in Protocol 4.7 can be instantiated with the OT-based protocol of Section 6.1 with the result
that the only assumption required is DDH (since oblivious transfer can also be instantiated under
this assumption). Although this is not strictly a minimal assumption (since ECDSA does not
strictly require DDH), it is a much closer assumption than Paillier.

5.2 Efficiency and Experimental Results

In this section, we analyze the theoretical complexity of our protocol, and describe its concrete
running time based on our implementation. For the cost, we count the number of exponentiations
and communication of group elements (we don’t count the cost of commitments since this involves
only computing a hash function, and sending small bandwidth; we count the cost of sending an
element of Zq as the same as a group element even though it’s less).

5.2.1 Theoretical Complexity

The Fmult protocol is comprised of subprotocols for init, input, element-out and mult (affine is a
local computation only). In addition, it includes a call to FcheckDH and to πprivmult. Recall that we

have two instantiations of πprivmult, one based on OT and the other on Paillier; see Section 6. The
costs of each of these subprotocols is summarized in Table 1 (where mult of Fmult includes the cost
of FcheckDH and πprivmult; note that πprivmult is run in parallel to the rest and so does not add rounds).

We also remark that the base OT computations for πprivmult based on OT are run in the ECDSA
key generation phase, as is the Paillier key-generation and proof of correctness of the key for the
Paillier-based protocol. We count these under init of Fmult. For this, we use the OT protocol of [8]
that costs 3 exponentiations for the sender and 2 for the receiver (and sending 4 group elements),
and use the OT extension of [26] that requires κ base OTs for security parameter κ (this is the
same as used in [13]). We therefore count 2.5 × 128 = 320 exponentiations between each pair of
parties (averaging that each party is sender half the time and receiver the other half).

The protocol for computing Fecdsa is comprised of KeyGen and Sign. The KeyGen phase
consists of one call of each of init, input and element-out of Fmult. The overall cost appears in
Table 1 (obtained by summing the costs from Fmult); note that these must be called sequentially,
and thus the round complexity is also summed. The Sign phase consists of two parallel calls to
input of Fmult, followed by a parallel call to element-out and mult, and an additional call to mult.
Note that the second call to mult can begin as soon as the result of element-out is received, thereby
reducing the round complexity. Note also that when using πprivmult based on Paillier, the second
multiplication requires only 2 Pailler exponentiations and sending a single Paillier ciphertext; this
is explained in Section 6.2.

Table 1 clearly shows the communication/computation tradeoff between the OT-based and
Paillier-based variants. In particular, the OT-based protocol has much higher bandwidth, but
lower computation. This is due to the fact that once the base OTs have been computed in the

18

key generation phase, the OT extensions used in the actual signing have almost zero cost and are
not noticeable relative to the rest of the protocol. In contrast, the Paillier-based protocol requires
7(n−1) additional large-integer exponentiations (which are much more expensive than the Elliptic
curve operations). In Section 5.2.2, we show the actual running-time of the variant of our protocol
that uses Paillier-based private multiplication.

Protocol EC Mult. Paillier Exp. Communic. Rounds

FcheckDH 11 + 10n 0 8EC 3

init of πprivmult (OT) 320n 0 40KiB 2

mult of πprivmult (OT) 0 0 97KiB 2

init of πprivmult (Paillier) 0 11 + 11n 11N 1

mult of πprivmult (Paillier) 0 14n 16N 2

init of Fmult (OT) 2 + 322n 0 3EC + 40KiB 2
init of Fmult (Paillier) 2 + 2n 11 + 11n 3EC + 11N 2
input of Fmult 6 + 5n 0 5EC 1
element-out of Fmult 3 + 4n 0 3EC 1
mult of Fmult (OT) 34 + 32n 0 23EC + 97KiB 6
mult of Fmult (Paillier) 34 + 32n 14n 23EC + 16N 6

Totals – OT
KeyGen of Fecdsa 11 + 331n 0 11EC + 40KiB 5
Sign of Fecdsa (OT) 83 + 78n 0 59EC + 194KiB 8

Totals – Paillier
KeyGen of Fecdsa 11 + 11n 11 + 11n 11EC + 11N 5
Sign of Fecdsa 83 + 78n 21n 59EC + 24N 8

Table 1: Theoretical counts of all costs in our protocols; the communication cost given is in group elements
(denoted EC) and elements of ZN (denoted N) that each party sends to each other party. The cost of πpriv

mult

for OT is taken from [13, Sec. VI-D]; these concrete numbers are based on computational security parameter
κ = 128 and statistical security parameter 80. The key generation for the Paillier variant includes additional
costs not counted here (like local Paillier key generation, and verification of the zero-knowledge proof of
correctness of the Paillier key).

Variant Our Protocol [18]

Key generation 256-bit curve (OT) 40.3KiB theoretical
Key generation 521-bit curve (OT) 40.6KiB theoretical
Sign 256-bit curve (OT) 196KiB 6KiB
Sign 521-bit curve (OT) 198KiB 13KiB

Key generation 256-bit curve (Paillier) 3.1KiB theoretical
Key generation 521-bit curve (Paillier) 6.4KiB theoretical
Sign 256-bit curve (Paillier) 7.8KiB 6KiB
Sign 521-bit curve (Paillier) 9.8KiB 13KiB

Table 2: Concrete bandwidth for our protocol and [18], for different curve sizes, in kilobytes. The communi-
cation is how much each party sends to each other party. In all cases, we use a 2048-bit modulus for Paillier.

We compare the concrete communication costs to that of [18] in Table 2. When using the
OT-based private multiplication, the communication is significantly greater than [18], whereas our
Paillier-based protocol almost twice the communication of [18] for a 256-bit curve, and approxi-

19

mately the same communication of [18] for a 521-bit curve.

5.2.2 Experimental Results

We implemented our protocol in C++, and ran it on AWS with all machines of type Intel(R)
Xeon(R) CPU E5-2676 v3 @ 2.40GHz with 1 GB RAM (RedHat 7.2) and a 1Gb per second network
card. We ran experiments from 2 to 20 parties (all in the same region); each execution was run 16
times and we took the average. The results can be seen in the graph in Figure 1, and in Table 3.
We implemented the version with the Paillier-based private multiplication of Section 6.2 (although
the OT version has much faster computation, its significantly higher communication makes it less
attractive for most real-world scenarios). As is clearly seen, the signing time is practical (especially
for cryptocurrency applications): from 304ms for 2 parties to about 3sec for 10 parties and about
5sec for 20 parties. We stress that the implementation is single threaded, and the running time can
be significantly reduced by using multiple threads on multicore machines.

0

5000

10000

15000

20000

25000

30000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: The running times in milliseconds for key generation (top line in blue) and signing (bottom line
in red) for 2-20 parties, for the Pailler variant of the protocol.

As we have stressed, the primary contribution of this paper is to achieve practical signing and
key generation. Indeed, as shown in Figure 1, key generation takes 11sec for 2 parties, 17sec for 10
parties and 28 seconds for 20 parties. This is not very fast, but is clearly practical, especially since
key generation need only be run once.

We provide a comparison of our signing phase with [18]; we stress that we cannot compare key
generation, since this has not been implemented for [18] due to the fact that key generation requires
multiparty Paillier key generation (although two-party Paillier key generation can be feasible [15],
there is currently no practical multiparty variant). The comparison appears in Table 3. The
protocol of [18] was run on a Ubuntu desktop with an Intel quad-core i7-6700 CPU @ 3.40GHz
and 64GB of RAM (although only a single core was used). The times for [18] are taken from [22],
which refers to a reimplementation of [18] that is much faster than the times reported in [18] itself.
We stress that the times from [18, 22] include local computation only, and no communication. In

20

comparison, our signing phase including communication is 2–5 times slower than [18] (depending
on the number of parties). Since our goal is multiparty ECDSA with practical key generation and
signing, this demonstrates that our goal is achieved.

Number of GGN16 [18] Our protocol – Sign
Parties (local comp. only) (including communication)

2 205 304

3 256 575

4 312 840

5 369 1112

6 418 1395

7 453 1648

8 505 1929

9 557 2196

10 609 3267

11 661 2774

12 714 3011

13 765 3284

14 818 3572

15 876 3852

16 949 4144

17 977 4385

18 1029 4636

19 1083 5061

20 1136 5194

Table 3: Comparison of signing times (in milliseconds) between [18] and our protocol. The times
for [18] are of local computation only (without communication), whereas the times for our protocol
are in AWS with real communication.

5.3 Proof of Security of Protocol 5.1

Theorem 5.2 Protocol 5.1 securely computes Fecdsa with abort in the Fmult-hybrid model, in the
presence of a malicious adversary corrupting any t < n parties, with point-to-point channels.

Proof: We have already provided the intuition regarding the security of the protocol in Section 5.1,
and so proceed directly with the formal proof.

Let A be an adversary and let I ⊆ [n] be the set of corrupted parties. If all parties are corrupted,
then the simulation is trivial. We therefore consider I ⊂ [n] (with |I| < n) and we denote the set
of honest parties by J = [n] \ I. Throughout the proof, we denote corrupted parties by Pi (i.e.,
i ∈ I), honest parties by Pj (i.e., j ∈ J), and a running index over [n] by `.

We construct a simulator S who invokes A internally and simulates an execution of the real
protocol, while interacting with Fecdsa in the ideal model.

Key generation: For the key generation, S instructs all Pi with i ∈ I to send KeyGen(G, G, q)
to Fecdsa. Upon receiving back Q from Fecdsa, simulator S works as follows:

1. S receives init messages that A sends to Fmult, for every i ∈ I.

21

2. S receives the messages (input, sidgen, xi) that A sends to Fmult, for every i ∈ I.

3. S simulates Fmult sending (input, sidgen) to Pi, for every i ∈ I.

4. S receives the messages (element-out, 0) that A sends to Fmult, for every i ∈ I.

5. S simulates Fmult sending (element-out, 0, Q) to Pi, for every i ∈ I, where Q is the public-key
received by S from Fecdsa. In addition S computes Qi = xi · G for every i ∈ I, and chooses
random {Qj}j∈J under the constraint that

∑n
`=1Q` = Q. Then, S simulates Fmult sending

Q1, . . . , Qn to A.

6. S stores all of the values {xi}i∈I , as well as Q.

This completes the simulation of the key generation phase.

Signing: For the signing phase, upon input Sign(sid,m), if sid has not been used previously, then
S instructs all Pi with i ∈ I to send Sign(sid,m) to Fecdsa. Upon receiving back a signature
(r, s), simulator S works as follows:

1. S runs the ECDSA verify procedure on signature (r, s) and public key Q, and obtains the group
element R such that R = (rx, ry) and r = rx mod q.

2. S receives (input, sid‖1, ki) and (input, sid‖1, ρi) that A instructs Pi to send to Fmult, for all
i ∈ I.

3. S simulates Fmult sending (input, sid‖1) and (input, sid‖2) to Pi, for all i ∈ I.

4. S receives messages (mult, sid‖1, sid‖2) and (element-out, sid‖1) that A instructs Pi to send to
Fmult, for all i ∈ I.

5. S chooses a random τ ∈ Zq and simulates Fmult sending (mult-out, sid‖1, sid‖2, τ) to Pi for all
i ∈ I.

6. S simulates Fmult sending (element-out, sid‖1, R) to Pi for all i ∈ I, where R is as computed in
Step 1 above. In addition S computes Ri = ki ·G for every i ∈ I, and chooses random {Rj}j∈J
under the constraint that

∑n
`=1R` = R. Then, S simulates Fmult sending R1, . . . , Rn to A.

7. S simulates Fmult sending (affine, 0, sid‖3, r,m′) to A.

8. S receives messages (mult, sid‖2, sid‖3) that A instructs Pi to send to Fmult, for all i ∈ I.

9. S sets s′ = s with probability 1/2, and otherwise s′ = q − s.

10. S computes β = τ · s′ mod q.

11. S simulates Fmult sending (mult-out, sid‖2, sid‖3, β) to Pi, for all i ∈ I.

12. If no abort has happened, then S sends (continue, sid, j) to Fecdsa for all j ∈ J to instruct
honest parties to receive output.

22

We now show that the simulation by S in the ideal model results in a distribution that is identical
to that of an execution of Protocol 5.1 in the Fmult-hybrid model. Observe that the only actual
values received by the corrupted parties during the execution are Q (in the key generation), R
(as the output of element-out) and values τ and β. The distribution over these values in a real
execution are

Q = x ·G, R = k ·G, τ = ρ · k, β = ρ · (m′ + x · r)

where k, ρ ∈ G are random, and r = rx mod q where R = (rx, ry). (Note that x is also random,
but it is fixed in the key generation phase, and the same in all signing executions.) In contrast, the
distribution over these values in the simulated execution are

Q = x ·G, R = k ·G, τ, β = τ · s′

where k, τ ∈ G are random, and s′ = k−1 · (m + x · r). (Observe that S does not know x and k,
but this is the distribution since it is derived from the output received from Fecdsa.) In the real
execution, since ρ is random, we have that τ and β are random under the constraint that

β

τ
=
ρ · (m′ + x · r)

ρ · k
= k−1 · (m′ + x · r) = s′.

Similarly, in the simulated execution, since τ is random, we have that τ and β are random under
the constraint that

β

τ
=
τ · s′

s′
= s′.

Thus, these distributions are identical.
The only issue that we have ignored is the distribution over s′ being less than or greater

than q/2. Specifically, Fecdsa always takes s in the signature to be less than q/2 (by defining
s = min{s′, q − s′}). The parties in the protocol do the same. However, the distribution over s′ in
the simulation is such that s′ < q/2 with probability 1/2 and s′ > q/2 with probability 1/2 (see
Step 9 in the simulation description). We therefore have to show that this is also the same in a
real execution. Nevertheless, this follows immediately from the fact that for every k ∈ Zq resulting
in s′ = k−1 · (m′ + r · x) it follows that −k results in s′ = −k−1 · (m+ r · x) = q − k−1 · (m+ r · x);
in both cases r is the same since if k ·G = (rx, ry) then −k ·G = (rx,−ry). This implies that the
probability of receiving s′ < q/2 is 1/2 and equal to the probability of receiving s′ > q/2. This
completes the proof.

5.4 Extending the Protocol to Threshold (and General) Access Structures

Our protocol is described using n-out-of-n additive sharing of the ECDSA private key x. This
therefore yields a protocol that is secure for any t < n corruptions, but also requires all n parties
to sign. For a full custody solution, it must be possible to define a more general access structure.
This is due to the fact that when currency needs to be transferred, not all parties may be available.
Using known techniques, it is possible for the n parties to generate a Shamir sharing of x with
threshold t, in order to enable a subset of any t parties to sign while preserving security for any
t′ < t corruptions. Once the private key x is shared in this way, our protocol for ECDSA signing
proceeds in almost exactly the same way as described in Protocol 5.1, with the sole change being
that the affine operation called to generate shares of β includes the appropriate Lagrange coefficients
so that β equals ρ ·(m′+x ·r). (Note that inside Fmult each party must hold a simple additive share

23

βi of β, but this is achieved by including the Lagrange coefficients) Of course, it is also necessary
to generate a Shamir sharing of d (as in the init phase of Fmult), to enable computing FcheckDH,
which requires shares of the private ElGamal key associated with P.

The above requires a modification to the key generation phase in order to generate these shares.
Fortunately, it is not difficult to generate t-out-of-n shares in a robust way for ECDSA, as described
in [13] (although their signing protocol only works for 2-out-of-n). We sketch this now, using
the Fmult functionality. The idea is for the parties to generate a sharing of a random degree-
(t − 1) polynomial p(·) where the ECDSA private key is x = p(0). Denote p(z) =

∑t−1
`=0 c` · z`;

note that x = p(0) = c0. This polynomial is generated by the parties calling (input, sid‖`) for
` = 0, . . . , t − 1, to define the coefficients (c` is the coefficient with identifier sid‖`). Next, the
parties call (element-out, sid‖0) to obtain the ECDSA public key Q = c0 · G = x · G. Finally,
each party Pi needs to obtain its Shamir share p(i) of the private key. This can be achieved by a
variant of the affine operation, for the parties to compute ElGamal encryptions and shares of p(i)
for i = 1, . . . , n; this is just computing a local linear combination of the shares of the coefficients
and the appropriate value i0, i1, i2, . . . , it−1. Once the parties hold these shares and the associated
ElGamal encryptions, they can run a variant of element-out that provides the value to only one
party, in order for each Pi to receive p(i) · G. Finally, the parties can all send their shares of p(i)
to Pi, who sums them and verifies that the result is correct by multiplying G by the sum and
comparing the result to the value received in element-out. This prevents any party from providing
an incorrect share. In order to ensure that Pi learns nothing but the sum, each Pj can randomly
mask its share and send shares of the mask to all other parties.

The above can be generalized to any linear secret sharing scheme for any access structure, as
long as such a scheme has an efficient method of robustly sharing x (and obtaining Q).

An important access structure. One specific access structure that is of practical interest
for cryptocurrency custody is the following. Define ` sets of users A1, . . . , A` of sizes n1, . . . , n`,
respectively, and define authorized thresholds t1, . . . , t` for each set. Then, define the access
structure to be any combination of AND/OR over these sets. For example, one could define
(A1 ∨A2) ∧ (A3 ∨A4) ∧A5, which means that in order to sign, an appropriate threshold is needed
in A1 or A2, and in A3 or A4 and in A5. To be concrete, A5 could denote a set of servers at a
trustee (that rely on automatic authorization and not human verification), A3 and A4 could be two
sets of shift workers at the financial institution offering the custody solution, and A1 and A2 could
be analogous workers at the customer who owns the cryptocurrency. Each of the sets may have
its own threshold which trades off security and the difficulty of contacting a large enough set when
funds need to be transferred. Our protocol easily supports such an access structure by using the
well-known method of traversing the circuit from the output to the input, and additively sharing
the key at an AND gate while replicating the key at an OR gate. Finally, Shamir sharing is used
to split the key shares at each node amongst the defined subset with the defined threshold.

6 Private Multiplication Instantiations

6.1 Private Multiplication Using OT

A multiplication protocol that achieves the above properties can be efficiently constructed using
the well-known oblivious-transfer based approach for multiplication. This approach was introduced
by [20] but suffers from selective-bit attacks. This problem can be overcome by encoding the

24

receiver’s inputs, as was recently shown in [13] also in the context of ECDSA. When running this
protocol with oblivious transfer that is secure in the presence of malicious adversaries, the corrupted
parties’ inputs to the oblivious are actually explicitly defined (and can be extracted). Thus, when
correct inputs are used, this protocol can be simulated, implying input indistinguishability. In
contrast, if the adversary inputs incorrect values to the OTs that do not define any real input (i.e.,
are inconsistent between the OTs), then the result will not be the valid c =

∑n
`=1 c` except with

negligible probability. Thus, in such a case, we merely need the first privacy requirement.

Complexity. When using OT extension [26], private multiplication requires the parties to carry
out a setup step, where a public key is established which is used to compute seeds for the sender and
receiver. Then, these seeds are expanded by a PRG (pseudo-random generator) to generate random
correlated pads to mask the transmitted messages. The setup step involves each party sending
40KiB and carrying out 320 elliptic-curve multiplications. (We have 320 multiplications since [26]
requires running κ base OTs, that cost 3 multiplications for the sender and 2 for the receiver, and
thus 2.5 on average. In practice, we take κ = 128, thereby requiring 320 multiplications.) The
extension part is cheap in terms of computation but requires each party to transmit 97KiB to each
of the other parties for each multiplication.

6.2 Private Multiplication Using Paillier

6.2.1 The Multiplication Protocol

We now present an alternative method of achieving private multiplication which has much lower
communication complexity but higher computation (but still very reasonable). This protocol is
based on the folklore multiplication protocol based on additively homomorphic encryption, with
additional zero-knowledge proofs to prevent malicious parties from cheating. In particular, one of
the main problems that we face in this protocol is that we wish to multiply inside Zq, but are using
Paillier with message space ZN . This opens the door to multiple attacks, that we discuss below.

Each party Pi works as follows:

1. Setup (run during key generation): Party Pi generates a Paillier public/private key pair [31],
denoted (pki, ski), and sends pki to all parties. We denote the Paillier encryption of x using
randomness r and public-key pk by Encpk(x; r). We stress that each party generates its own
Paillier key locally, and no distributed generation is needed. In addition, each party generates a
non-interactive proof that pki was generated correctly (more exactly, that gcd(N,φ(N) = 1 and
so the scheme is indeed additively homomorphic); see Section 6.2.3.

In addition, each party sets parameters s = t = 128 and ` = 80 (the parameters t, ` are utilized
in the zero-knowledge proofs in Sections 6.2.6 and 6.2.7), whereas s is used to ensure that δj→i
sent in Step 2 is large enough to hide Pj ’s private input.

2. Multiplication: each party Pi holds inputs xi, yi and the aim is for the parties to obtain z1, . . . , zn
such that

∑n
i=1 zi = (

∑n
i=1 xi) · (

∑n
i=1 yi) mod q. The protocol is as follows:

(a) Step 1 (message 1): Pi computes ci = Encpki(xi), where pki is its own public-key. In
addition, for every j, party Pi prepares a non-interactive zero-knowledge range proof π1i→j
using Nj proving that xi ∈ Zq (with soundness as long as xi ∈ (−2t+` · q, 2t+` · q) for

25

t, ` security parameters as defined in Section 6.2.6 (the proof requires a modulus from the
verifier, and thus is different for each Pj). For every j ∈ [n]\{i}, Pi sends (ci, π

1
i→j) to Pj .

(b) Step 2 (message 2): For every j ∈ [n]\{i}, party Pi receives cj = Encpkj (xj) and πj→i from
Pj . Party Pi verifies the proof πj→i and then uses the homomorphic operations—where
�,⊕ are homomorphic multiplication and addition, respectively—to generate

ci→j = (cj ⊕ 2t+` · q)� yi ⊕ δi→j = Encpkj (xj · yi + 2t+` · q · yj + δi→j)

for a randomly chosen δi→j ∈ Zq2·2t+`+s . In addition, Pi generates a non-interactive zero-
knowledge proof of knowledge π2i→j of the pair of values (yj , δj→i) such that ci→j = ((cj ⊕
2t+` · q) � yj) ⊕ δj→i with yj ∈ Zq and δj→i ∈ Zq2·2t+`+s (with soundness as long as yj ∈
(−2t+` · q, 2t+` · q) and δj→i ∈ (−q2 · 22t+2`+s, q2 · 22t+2`+s)). See Section 6.2.7 for the proof
specification. Pi sends (ci→j , π

2
i→j) to Pj .

(c) Step 3 (output): Pi receives all cj→i = Encpki(xi · yj + 2t+` · q · yj + δj→i) and π2j→i values

from Pj for every j ∈ [n]\{i}. Then, for each cj→i, Pi verifies the proof π2j→i, decrypts cj→i
and adds (xi + 2t+` · q) · 2t+` · q +2t+` · q2 · 2t+`+s mod N . Finally, Pi sums the results, adds
xi · yi and subtracts all its δi→j values, and reduces the result modulo q. The result is Pi’s
output zi.

Before proceeding, we explain some of the ideas behind the above protocol. First, we explain
why Pi and Pj add the 2t+` · q values. Note that the soundness of the zero-knowledge proof
provided by Pi only guarantees that xi ∈ (−2t+` · q, 2t+` · q). Thus, Pj first adds 2t+` · q to the
ciphertext ci before proceeding, ensuring that it encrypts a value that is greater than 0 (and less
than 2 ·2t+` · q). Likewise, the proof provided by Pj only guarantees that b ∈ (−2t+` · q, 2t+` · q) and
∆ ∈ (−2t+` · q2 · 2t+`+s, 2t+` · q2 · 2t+`+s). Thus, Pi adds (xi + 2t+` · q) · 2t+` · q mod N , converting
the multiplication by b to a multiplication by b + 2t+` · q, ensuring that even if −2t+` · q < b < 0
then the result is multiplication by a positive value in the range [0, 2 · 2t+` · q). Furthermore, Pi
adds 2t+` · q2 · 2t+`+s mod N so that if −2t+` · q2 · 2t+`+s < ∆ < 0 then the result is as if a positive
value in the range [0, 2 ·2t+` ·q2 ·2t+`+s) was added. Note that these operations are modulo N since
this is the domain of the Paillier encryption.

Next, we explain the choice of δj→i ∈ Zq2·2t+`+s . In our use of this protocol, all xi, yi ∈ Zq.
In order to ensure that cj→i reveals nothing about yj , the value δj→i needs to be longer than
xi · yj + 2t+` · q · yj (this is because no modulo reduction takes place and so Pi receives the integer
value). Now, as stated above, the zero-knowledge proof regarding xi only guarantees that it is less
than q · 2t+` and so xi · yj < q2 · 2t+`. We therefore choose δj→i ∈ Zq2·2t+`+s , making it s-bits longer

than xi · yj + 2t+` · q · yj and so making the statistical distance between xi · yj + 2t+` · q · yj + δj→i
and a random element r ∈ Zq2·2t+`+s be at most 2−s.

Correctness: The protocol is correct as long as there is no reduction modulo N . In order to see
this, note that

xi · yj + 2t+` · q · yj + δj→i + (xi + 2t+` · q) · 2t+` · q + 2t+` · q2 · 2t+`+s = xi · yj + δj→i mod q.

Thus, by each party Pi subtracting the δi→j values they chose, the overall sum equals x · y. Now,
we have that no reduction modulo N takes place in the Paillier encryption as long as

xi · yj + 2t+` · q · yj + δj→i + (xi + 2t+` · q) · 2t+` · q + 2t+` · q2 · 2t+`+s < N.

26

Now, since xi, yj ∈ Zq and δj→i ∈ Zq2·2t+`+s , we have that the above is upper bound by

q2 + 2t+` · q2 + q2 · 2t+`+s + 22t+2` · q2 + 2t+` · q2 · 2t+`+s < 2 · q2 · 22t+2`+s.

Taking s = ` = 80 (which suffices for statistical distance) and t = 128, we have that as long as
N > q2 · 2497 there is no reduction modulo N in the computation. This implies that for q < 775
(which includes all typically used curves), it suffices to use N of length 2048 (which is the minimum
reasonable size for Paillier in any case).

On the necessity of the zero-knowledge proofs. We first prove why it is necessary to have
the parties prove that the values they used in the homomorphic encryption are within certain
ranges. Consider a corrupted party Pi who sends an encryption ci = Encpki(µ · qν + xi) for some
µ, ν ∈ N with the property that if yj is small then (µ · qν + xi) · yj < Ni and if yj is large then
(µ · qν + xi) · yj ≥ Ni. In the former case, the protocol will proceed with everything correct (since
µ · qν · yj + xi · yj = xi · yj mod q), whereas in the latter case the overall protocol will fail (since
[µ · qν · yj mod Ni] + xi · yj 6= xi · yj mod q). This will reveal one bit of information about yj that
should not be revealed, and enables an adversary to carry out a binary search on private values.
In a similar way, a corrupted Pj can also use yj + µ · qν and achieve the same effect. In order to
prevent this attack, we have both parties prove that their values are in range in zero-knowledge.
Since N is much larger than q, we are able to use range proofs that have a lot of slack regarding
soundness. This is important since tight range proofs are much more expensive.

In addition, recall that Pj proves that it computed cj→i by multiplying by some b and adding ∆
(within range). This part of the proof is needed due to the following. Assume that the encryption
scheme used (Paillier) is actually fully homomorphic and not just additively homomorphic. Then, Pj
could generate the ciphertext cj→i by computing a circuit that says: if the value encrypted modulo
q is less than q/2 then output the correct value; else output an incorrect value. This would leak
information about Pi’s private value, as discussed above. Thus, in order to prove security without
the zero-knowledge proof, one would need to assume that Paillier is not fully homomorphic, which
would be a non-standard assumption on Paillier. We stress that it may be possible to prove the
ECDSA protocol secure under a game-based definition without making this assumption (although
we do not know if this is the case). Nevertheless, our aim is to achieve simulation-based security
which seems to require this stronger property.

Multiple multiplications. In our use of multiplication in our ECDSA protocol, the parties need
to carry out two multiplications, where one of the values is the same. Let xi be the input of Pi and
let yj , y

′
j be the inputs of Pj . Then, Pi sends a single first message, and Pj computes its second

message once with yj and δj→i and a second time with y′j and a different random δ′j→i. Thus, the
second multiplication requires only a single round of communication, and only a single ciphertext.
Note that this second multiplication can also be run later and does not need to be run at the same
time as the first.

Complexity. We count the computation and communication complexity of this protocol. In the
setup (key generation) phase, each party runs Paillier key generation, computes 11n exponentiations
in ZN (11 to generate the proof and 11(n − 1) to verify the other proofs) and sends 12 elements
of ZN (for the zero-knowledge proof); see Section 6.2.3. (There is an additional cost of checking
divisibility of N as described in [21].) Thus, the overall cost is computing approximately 11n

27

exponentiations in ZN and sending 11 elements of ZN to each party. Then, for multiplication, each
party works independently with each other party to pairwise multiply their shares. The cost of this
is carrying out one Paillier encryption and decryption (when playing Pi), homomorphic operations
on Paillier which are not significant (when playing Pj), and proving and verifying both proofs of
Sections 6.2.6 and 6.2.7. Counting the cost of one Paillier encryption to be approximately two
Pedersen commitments, we have that each of these proofs costs approximately 3 Paillier encryption
by the prover and verifier each, and the transmission of approximately 6 elements of ZN . Thus,
the overall cost is computing approximately 14n Paillier encryptions, and each party sending each
other party approximately 16 elements of ZN (12 for the proofs, plus two Paillier ciphertext which
are equivalent to two elements of ZN each). For N of length 2048, this comes to approximately
4KiB for multiplication and 2.75KiB for setup (key generation).

As discussed above, in our ECDSA protocol we carry out two multiplication with the same
value from Pi. In this second multiplication, no ciphertexts or proofs need to be sent or verified
for Step 1. Thus, the cost of the second multiplication is exactly half the above, and so computing
approximately 7n Paillier encryptions and each party sending each other party approximately 8
elements of ZN .

Bandwidth versus computation. The Paillier-based solution presented here has much lower
bandwidth than the OT-based solution of Section 6.1. As such, it is better suited for scenarios
where some of the participants are more limited (e.g., may be mobile phones). However, in a setting
where all parties are in the same region and have fast connections, the OT-based approach may be
preferable.

6.2.2 Security

We now show that this protocol satisfies our definition of private multiplication in Section 2.3.
First, observe that the first privacy property easily follows from the fact that each party Pj sees only
encryptions of the other Pi’s inputs under Pi’s public key (which are therefore indistinguishable),
and decrypted values xi · yj + δj→i (plus other terms divisible by q) which statistically hides the
value, since δj→i is random in Zq2·2t+`+s and this is 2s times larger than the values encrypted.
(See more details regarding this in the explanation about why δj→i is chosen in Zq2·2t+`+s following
the protocol description in Section 6.2.1.) Formally, privacy can be shown by the fact that for
every two sets of honest parties’ inputs {xj , yj}j∈J and {x′j , y′j}j∈J , the Paillier ciphertexts are
indistinguishable (via reduction to the semantic security of the encryption), and the distribution
over xi ·yj + 2t+` · q ·yj + δj→i is statistically close to the distribution over xi ·y′j + 2t+` · q ·y′j + δj→i.

For input indistinguishability, observe that once again, for every two sets of inputs {x`, y`}`∈[n]
and {x′`, y′`}`∈[n], the Paillier encryptions of the honest parties’ inputs are indistinguishable, and

the xi · yj + 2t+` · q · yj + δj→i and x′i · y′j + 2t+` · q · y′j + δ′j→i are statistically close. Now, since
the sum [c mod q] is the same in both cases, this means that there exist δj→i, δ

′
j→i such that

zi,j = xi · yj + 2t+` · q · yj + δj→i and zi,j = x′i · y′j + 2t+` · q · y′j + δ′j→i for all i, j ∈ [n] (with i 6= j).
Thus indistinguishability holds, even given all output shares c1, . . . , cn. We stress that the above
holds only if there is no reduction modulo Nj of any value; this is crucial since otherwise the fact
that the two sets of inputs define the same output modulo q does not imply that they define the
same output in the Paillier decryptions. In order to see that no reduction modulo N takes place at
any point, recall that the zero-knowledge proofs guarantee that all values provided by parties are

28

in the defined ranges and that the parties add appropriate values (2t+` · q · yj and so on) to make
sure that any negative values used are converted to positive values that are equivalent modulo q.
See more discussion on this after the protocol description in Section 6.2.1.

6.2.3 The Zero-Knowledge Proof of Correct Paillier Generation

We use the new proof of [21] in order to certify that the Paillier key was created correctly. Observe
that their proof certifies that RSA is a permutation by proving that gcd(N,φ(N)) = 1 and xe mod
N is a 1–1 permutation over ZN . We actually don’t need this second part of the statement. However,
they only prove a promise problem so that the proof is only guaranteed to fail if xe mod N is not
a 1–1 permutation over ZN . For our application, we need soundness to hold if gcd(N,φ(N)) 6= 1.
Fortunately, we can easily adapt this by take e = N and then it suffices to take m1 = m2, meaning
that we just need to show that m2 random values have Nth roots. (This also means that we only
need to compute the σj values taking e = N ; see Step 3 of the basic protocol in [21]). Concretely,
we used the parameters α = 6370 and m2 = 11, meaning that the cost of the protocol is 11 modular
exponentiations, and the bandwidth is 11 elements of ZN .

6.2.4 Zero-Knowledge Equality of Paillier Encryption and Pedersen Commitment

In existing efficient range proofs, soundness requires that the prover use a commitment to the value
over a group of unknown order (this essentially forces the prover to work over the integers and
not modulo the order of the group). Since we wish to have the prover prove that a value in a
Paillier encryption is within a range, we first need the prover to commit to the same value in a
Pedersen commitment (modulo a modulus for which it does not know the factorization) and prove
that it committed to the same value. Then, the range proof can be carried out on the Pedersen
commitment. In this section, we present a zero-knowledge proof that the same value was used in
a Paillier encryption and Pedersen commitment; this proof is taken from [2, Appendix A] with
appropriate modifications for Paillier.

Formally, we describe a Sigma protocol for the relation:

Req =
{(

(C, C̃,N, Ñ , g, h), (x, r, ρ)
)∣∣∣C = (1 +N)x · rN mod N2 ∧ C̃ = gx · hρ mod Ñ

}
where g, h ∈ Z∗

Ñ
are random (with the discrete log of h relative to g and vice versa unknown to

the prover). The zero-knowledge property holds for x ∈ Zq (as is the case for our application);
technically, we do not include this requirement in the relation since that would mean that soundness
must ensure that x is in this range but this is what is covered by the range proof that follows this
one. The proof is parameterized by security parameter t; concretely we take t = 128 and compile
the Sigma protocol into a zero-knowledge proof of knowledge using the Fiat-Shamir transform (this
is true for all Sigma protocols that we use).

1. Prover P ’s first message: P chooses random α ∈ Zq·2t+` , β ∈ ZN and γ ∈ ZÑ . Then, P

computes A = (1 +N)α · βN mod N2 and B = gα · hγ mod Ñ , and sends (A,B) to V .

2. Verifier V ’s challenge: V chooses a random e ∈ {0, 1}2t and sends it to P .

3. P ’s second message: P computes z1 = α+ e · x (over the integers), z2 = β · re mod N , and
z3 = γ + ρ · e. P sends (z1, z2, z3) to V .

29

4. V ’s verification: V accepts if and only if

(1 +N)z1 · zN2 = A · Ce mod N2 and gz1 · hz3 = B · (C̃)e mod Ñ .

We remark that when using the Fiat-Shamir paradigm, P computes e = H(C, C̃,N, Ñ , A,B) and
defines the proof to be π = (e, z1, z2, z3) only. Then, V derives A = (1+N)z1 ·z2N · (Ce)−1 mod N2

and B = gz1 · hz3 · (C̃e)−1 mod Ñ , and verifies the hash.

6.2.5 Range Proof for Pedersen with Slack (ZK-CFT)

This proof is from [7], as described in [2, Section 1.2.3].

Notation. Let t, `, s be security parameters (in the implementation, we take t = s = 128 and
` = 80). Let Ñ be the modulus for Pedersen, and let g, h ∈ ZÑ be random (with the discrete log
of h to base g and vice versa unknown to the prover). We denote by Pedg,h,Ñ (x; ρ) the Pedersen

commitment of x with randomness ρ; i.e., Pedg,h,Ñ (x; ρ) = gx · hρ mod Ñ .
The prover wishes to prove that x committed to in the Pedersen commitment lies in the interval

[0, q). Formally, we describe a Sigma protocol for the relation:

RPedRange =
{(

(C̃, Ñ , g, h), (x, ρ)
)∣∣∣C̃ = gx · hρ mod Ñ ∧ x ∈ Zq

}
although the soundness of the protocol only guarantees that x ∈

(
−2t+` · q, 2t+` · q

)
; this is what

is meant by “slack” in the protocol.

1. P ’s first message: P chooses random a← Z2t+`·q and α← ZÑ and computes the commit-

ment A =
[
ga · hα mod Ñ

]
= Pedg,h,Ñ (a;α). P sends A to V .

2. V ’s challenge: V chooses a random e← Z2t and sends it to P .

3. P ’s second message: P computes z1 = a + x · e (over the integers) and z2 = α + e · ρ. P
sends (z1, z2) to V .

4. V ’s verification: V verifies that z1 ∈ [2t · q, 2t+` · q) and that gz1 · hz2 = A · C̃e mod Ñ .

We remark that when using the Fiat-Shamir paradigm, the proof is π = (e, z1, z2), and V derives
A = gz1 · hz2 · (C̃e)−1 mod Ñ and verifies the hash.

6.2.6 Range Proof for Paillier with Slack

In this section, we describe the full range proof for Paillier (with slack). The prover wishes to prove
that x encrypted in a Paillier ciphertext C lies in the interval [0, q). Formally, we describe a Sigma
protocol for the relation:

RPaillRange =
{

((C,N), (x, r))
∣∣C = (1 +N)x · rN mod N2 ∧ x ∈ Zq

}
.

As above, the soundness of the protocol only guarantees that x ∈
(
−2t+` · q, 2t+` · q

)
.

This proof simply combines the proofs of Section 6.2.4 and 6.2.5. That is, the prover generates
a Pedersen commitment, proves that it commits to the same value as encrypted in the Paillier
ciphertext and then proves that the committed value is in the appropriate range. Formally:

30

1. Verifier message: The verifier V sends the prover P parameters Ñ , g, h for Pedersen com-
mitments (V chooses Ñ = p·q where p = 2p′+1, q = 2q′+1 are safe primes, and sets g, h to be
random elements QRÑ ; since Ñ is a safe prime, the number of generators of QRÑ is φ(p′ · q′)
and so the probability of a random quadratic residue not being a generator is negligible).

2. Prover message: P chooses a random ρ ← ZÑ and computes C̃ = gx · hρ mod Ñ . Then,

P proves in zero-knowledge that
(

(C, C̃,N, Ñ , g, h), (x, r, ρ)
)
∈ Req (using the proof of Sec-

tion 6.2.4) and that
(

(C̃,N, Ñ , g, h), (x, ρ)
)
∈ RPedRange (using the proof of Section 6.2.5).

6.2.7 Zero-Knowledge Proof of Pailler-Pedersen Range-Bounded Affine Operation

In this section, we describe a zero-knowledge proof that shows that a value D was generated from
C by carrying out a homomorphic affine operation using values y, δ in a given range (such an affine
operation is defined by x · y + δ where x is the value encrypted in C). Formally, we are interested
in the relation:

RAffineRange =
{

((C,D,N), (y, δ))
∣∣∣D = Cy · (1 +N)δ mod N2 ∧ y ∈ Zq ∧ δ ∈ Zq2·2t+`+s

}
.

The proof is a generalization of the proofs in Sections 6.2.4 and 6.2.5, and works as follows:

1. Verifier first message: The verifier V sends the prover P parameters Ñ , g, h for Pedersen
commitments (as in Section 6.2.6). (Note: in our specific usage, we can set N = Ñ since the
Paillier private key belongs to the verifier.)

2. First prover message: P chooses random α← Zq·2t+` , β ← Zq2·22t+2`+s , and ρ1, ρ2, ρ3, ρ4 ∈
ZÑ . Then, P computes A = Cα · (1 + N)β mod N2 and B1 = gα · hρ1 mod Ñ , B2 = gβ ·
hρ2 mod Ñ , B3 = gy ·hρ3 mod Ñ and B4 = gδ ·hρ4 mod Ñ . P sends (A,B1, B2, B3, B4) to V .

3. Verifier challenge: V sends the prover a random e ∈ Zt.

4. Second prover message: P computes z1 = α + e · y, z2 = β + e · δ, z3 = ρ1 + e · ρ3 and
z4 = ρ2 + e · ρ4. Send (z1, z2, z3, z4) to the verifier.

5. Proof verification: Accept if and only if

(a) z1 ∈ [2t · q, 2t+` · q)
(b) z2 ∈ [2t · q2 · 22t+`+s, 2t+` · q2 · 22t+`+s) = [q2 · 23t+`+s, q2 · 23t+2`+s)

(c) Cz1 · (1 +N)z2 = A ·De mod N2

(d) gz1 · hz3 = B1 ·B3
e mod Ñ .

(e) gz2 · hz4 = B2 ·B4
e mod Ñ .

We remark that here B3, B4 need to be sent, as well as (e, z1, z2, z3, z4) when using Fiat-Shamir.
Observe that the range proof is based on verifying the ranges of z1, z2, and it is valid since these
are proven to be the values committed in B3, B4 (for which the prover does not know the order of
the group).

31

7 Checking Diffie-Hellman Tuples

In this section, we show how to securely compute the FcheckDH functionality defined in Section 4.2.
The idea behind the protocol is as follows. Each party holds P1, . . . ,Pn such that P =

∑n
`=1 P`,

a tuple (G,P, U, V), and a share di such that Pi = di ·G. The aim of the parties is to verify that
V = d ·U where d =

∑n
`=1 di. Naively, each party Pi can send Ui = di ·G to all other parties with a

zero-knowledge proof that (G,U,Pi, Ui) is a Diffie-Hellman tuple (using witness di). This ensures
that Pi computed Ui = di ·G with the same di that defines Pi = di ·G. Then, using all Ui received,
each party Pi can compute

∑n
`=1 U` =

∑n
`=1 d` ·U = d ·U and check that it equals V . If the input

is indeed a Diffie-Hellman tuple, then this equality will hold.
Unfortunately, however, the above method is not secure. This is due to the fact that by the

definition of FcheckDH (and what we need for securely computing Fmult), the parties should learn
nothing but whether or not the input is a Diffie-Hellman tuple. In order to achieve this, the
parties first need to randomize the ciphertext, and only then can they proceed as above. This
randomization is carried out by having each party Pi choosing random αi, ρi ∈ Zq and computing
(Ui, Vi) = (αi ·U + ρi ·G,αi · V + ρi · P). As described in Section 3.3 for relation RRE (and proven
in the proof of Theorem B.1; see Eq. Eq. (1)), this has the property that if (G,P, U, V) is a Diffie-
Hellman tuple, then all (G,P, Ui, Vi) are Diffie-Hellman tuples, and so (G,P,

∑n
`=1 U`,

∑n
`=1 V`) is a

Diffie-Hellman tuple. In contrast, if (G,P, U, V) is not a Diffie-Hellman tuple, then the (G,P, Ui, Vi)
tuples generated by the honest parties are such that Ui and Vi are truly random and independent.
Thus, the resulting sum will be a Diffie-Hellman tuple with probability only 1/q. The protocol for
securely computing FcheckDH is described in Protocol 7.1.

PROTOCOL 7.1 (Securely Computing FcheckDH in the Fzk,Fcom-zk-Hybrid Model)

Input: Each party Pi holds a private key di.

Auxiliary Input: Each party holds public keys ~P = {P1, . . . ,Pn} and a pair (U, V); denote
P =

∑n
`=1 P`. In addition, each party holds a unique session identifier sid.

The init subprotocol: The init subprotocol is identical to init of Fmult; see Protocol 4.3. (Since it
is exactly the same protocol and exactly the same values, this is run once for both functionalities.)

The check subprotocol: Each party Pi works as follows:

1. Round 1: Party Pi chooses random αi, ρi ∈ Zq and computes (Ui, Vi) = (αi · U + ρi · G,αi ·
V + ρi · P). Then, Pi sends (ComProve, sid, i, (U, V, Ui, Vi), (αi, ρi)) to FRRE

com-zk.

2. Round 2: Upon receiving (ProofReceipt, sid, j) for all j ∈ [n], party Pi sends (DecomProof, sid)
to FRRE

com-zk.

3. Round 3:

(a) Pi receives (DecomProof, sid, j, (U, V, Uj , Vj), βj) from FRRE

com-zk for all j ∈ [n]. If some
βj = 0, then Pi aborts.

(b) Pi locally computes U ′ =
∑n
i=1 Ui and V ′ =

∑n
i=1 Vi.

(c) Pi computes U ′i = di · U ′ and sends (proof, sid, i, (G,U ′,Pi, U ′i), di) to FRDH

zk .

4. Output: Pi receives (proof, sid, j, (G,U ′,Pi, U ′i), β′j) from FRDH

zk for all j ∈ [n]. If any β′j = 0

then Pi aborts. Pi checks that V ′ =
∑n
`=1 U

′
`. If equality holds, it outputs accept; else, it

outputs reject.

32

Complexity. The cost of Protocol 7.1 is 11 + 10(n − 1) exponentiations per party, each party
sending 7 group elements (or equivalent) to each other party, and 3 rounds of communication.

Proposition 7.2 Assume that the DDH problem is hard in G. Then, Protocol 7.1 securely com-
putes Functionality 4.2 with abort in the (FRRE

zk ,FRDH
com-zk)-hybrid model, in the presence of a mali-

cious adversary corrupting any t < n parties, with point-to-point channels.

Proof: Let bad be the event that (G,P, U, V) is not a Diffie-Hellman tuple but the honest parties
output accept. This event happens when V 6= d ·U but V ′ = d ·U ′ (where d =

∑n
i=1 di). Since the

corrupted parties are committed to their Ui, Vi values before seeing the honest parties’ values Uj , Vj ,
it follows that U ′, V ′ is a true rerandomization of U, V . Thus, if (G,P, U, V) is not a Diffie-Hellman
tuple, it follows that U ′, V ′ are uniformly and independently distributed in G. Thus V ′ = d · U ′
with probability exactly 1/q, implying that Pr[bad] = 1/q.

We now describe the simulator S. Let A be the adversary in the real protocol. As in all our
previous proofs, we use I to denote the set of indexes of the corrupted parties and J for the set of
the honest parties. The simulation of init is identical to that of init in Fmult and so is not repeated
here. We describe now the simulator for check. S sends (check, i, U, V, di) to FcheckDH for every
i ∈ I, using the same di as in the init subprotocol. S receives back accept or reject.

1. S invokes A and simulates FRRE
com-zk sending Pi the message (ProofReceipt, sid, j) for every i ∈ I

and j ∈ J .

2. S receives the messages (ComProve, sid, i, (U, V, Ui, Vi), (αi, ρi)) that A sends to FRRE
com-zk for every

i ∈ I.

3. If S received accept from FcheckDH, then it chooses a random γ ∈ Zq and sets U ′ = γ · G
and V ′ = γ · P (and so (G,P, U ′, V ′) is a random Diffie-Hellman tuple). Let j∗ ∈ J . Then,
for every j ∈ J \ {j∗}, simulator S computes Uj , Vj like an honest Pj . Then, S∗ computes
Uj∗ = U ′ −

∑
6̀=j∗ U` and Vj∗ = V ′ −

∑
`6=j∗ V`.

4. If S received reject from FcheckDH, then S chooses independent random U ′j , V
′
j ∈ G for every

j ∈ J (and sets U ′ =
∑n

`=1 U
′
` and V ′ =

∑n
`=1 V

′
`).

5. S simulates FRRE
zk sending Pi the message (DecomProof, sid, j, (U, V, Uj , Vj), 1) for every j ∈ J .

6. S receives the message (DecomProof, sid, i) that A sends to FRRE
com-zk for every i ∈ I. If (Ui, Vi) 6=

(αi · U + ρi ·G, αi · V + ρi · P) for some i ∈ I, then S simulates the honest parties aborting in
the real world, sends abort to FcheckDH and halts.

7. S receives the messages (DecomProof, sid) from A for each corrupted party. Then, if S received
accept from FcheckDH, it computes U ′i = di · G for every i ∈ I, and chooses random U ′j ∈ G
for each j ∈ J under the constraint that

∑n
`=1 U

′
` = V ′. In contrast, if S received reject from

FcheckDH, then S just chooses random U ′j ∈ G for every j ∈ J . If V ′ =
∑n

`=1 U
′
`, then S outputs

fail and halts.

8. S simulates FRDH
zk handing A the messages (proof, sid, j, (G,U ′,Pj , U ′j), 1) for every j ∈ J .

33

9. S receives the messages (proof, sid, i, (G,U ′,Pi, U ′i), di) that A sends to FRDH
zk for every i ∈ I.

Simulator S checks that sid is correct, U ′ and Pi are correct and that Pi = di ·G and U ′i = di ·U ′
for every i ∈ I. If not, it simulates the honest parties aborting in the protocol, sends abort to
FcheckDH, and aborts.

10. If no abort took place (or fail), then S sends (continue, j) to FcheckDH for every j ∈ J (for the
honest parties to receive output).

The proof below relies on the fact that if (G,P, U, V) is a Diffie-Hellman tuple, then (G,P, U ′, V ′)
is a random Diffie-Hellman tuple, and if (G,P, U, V) is not a Diffie-Hellman tuple then U ′, V ′ are in-
dependent random group elements. This is guaranteed in the protocol in the FRRE

com-zk-hybrid model,
since the adversary is (perfectly) committed to its Ui, Vi before seeing the honest parties’ Uj , Vj
values. We consider two cases:

Case 1 – the output from FcheckDH is accept: This means that V =
∑n

`=1(d` · U) and so V ′ =∑n
`=1(d` · U ′) =

∑n
`=1 U

′
`. Observe that if there are t = n − 1 corrupted parties and exactly

one honest party Pj , the simulation is perfect. This follows from the fact that S can compute
U ′j = V ′ −

∑
`∈[n]\{j} U

′
` as it knows in advance all U ′`s of the corrupted parties and (G,P, U ′, V ′)

is a random Diffie-Hellman tuple, exactly like in a real execution. Thus, we focus only on the
case where there are at least two honest parties. In this case, we need to show that the output
distributions from the real and simulated executions are indistinguishable.

We prove this by reducing it to the DDH assumption. Let D be a distinguisher who receives
(G, G, q) and a series of |J | − 1 tuples (G, Û , P̂j , Ûj) for j ∈ J \ {j∗}, where all tuples are either
random, or are Diffie-Hellman tuples (with Û ∈ G is random and the same in all tuples). We denote
by j∗ the index of one of the honest parties. The distinguisher D works as follows:

1. D works exactly like S in the init phase, setting Pi = di · G for every i ∈ I. However, for
j ∈ J \{j∗}, D sets Pj = P̂j instead of choosing it at random. In addition, D sets (U, V) to be a
random Diffie-Hellman tuple. Finally, D chooses a random d ∈ Zq and sets Pj∗ = d·G−

∑
` 6=j∗ P`.

2. D invokes A on input (check, i, U, V) and runs the simulator instructions, withe following
changes:

(a) Instead of choosing a random Diffie-Hellman tuple (U ′, V ′) in Step 3 of the simulation, D
defines U ′ = Û and V ′ = d · U ′. Then, it chooses the Uj , Vj values of the honest parties as
described in the simulation.

(b) When defining U ′j for j ∈ J in Step 8 of the simulation, D sets U ′j = Ûj for every j ∈ J \{j∗}
and sets U ′j∗ like in the simulation (i.e, when choosing the U ′j under the constraint, all U ′j
for j 6= j∗ are set to Ûj , and U ′j∗ is chosen to fulfill the constraint).

Observe that if the tuples D received are not Diffie-Hellman tuples, then the distribution generated
is exactly that of the simulator. This is because all U ′j for j ∈ J \ {j∗} are random, exactly like for
S, and this is the only difference. (Note that U ′, V ′ generated by D are exactly like S because they
are a random Diffie-Hellman tuple, computing using a random d. Likewise, all Pi have the same
distribution.)

In contrast, if the tuples D received are Diffie-Hellman tuples, then the distribution is exactly
like a real execution for case that the output is accept. This is due to the fact that all values are
Diffie-Hellman tuples, just like honest parties produce.

34

Case 2: the output from FcheckDH is reject: This case differs from the previous one in that the
simulator chooses U ′, V ′ to be random elements (and not a random Diffie-Hellman tuple). As
above, the distribution is identical to a real execution, except for the U ′j values for j ∈ J which are
randomly chosen by S. The reduction to DDH here is very similar to above. The only difference in
this case can occur when the bad event happens, in which case the parties accept in a real execution
but reject in the ideal world, indicated by S outputting fail. As we have noted above, this happens
with probability only 1/q which is negligible.

This concludes the proof.

Acknowledgements

We thank Valery Osheter from Unbound Tech Ltd. for the implementation of the ECDSA protocol
and for running the experiments, and Rosario Gennaro and Steven Goldfeder for helpful discussions.

References

[1] O. Blazy, C. Chevalier, D. Pointcheval and D. Vergnaud. Analysis and Improvement of
Lindell’s UC-Secure Commitment Schemes. In ACNS 2013, Springer (LNCS 7954), pages
534–551, 2013.

[2] F. Boudot. Efficient Proofs That a Committed Number Lies in an Interval. In EUROCRYPT
2000, Springer (LNCS 1807), pages 431–444, 2000.

[3] C. Boyd. Digital Multisignatures. In Cryptography and Coding, pages 241–246, 1986.

[4] D. Boneh, R. Gennaro and S. Goldfeder. Using Level-1 Homomorphic Encryption To Im-
prove Threshold DSA Signatures For Bitcoin Wallet Security In Latincrypt 2017.

[5] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[6] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available at
http://eprint.iacr.org/2000/067.

[7] A. Chan, Y. Frankel and Y. Tsiounis. Easy Come - Easy Go Divisible Cash. Updated version
with corrections, GTE Tech. Rep. (1998).

[8] T. Chou and C. Orlandi. The Simplest Protocol for Oblivious Transfer. In LATINCRYPT
2015.

[9] R.A. Croft and S.P. Harris. Public-Key Cryptography and Reusable Shared Secrets. In
Cryptography and Coding, pages 189–201, 1989.

[10] I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applications of
Paillier’s Probabilistic Public-Key System. In PKC 2001, Springer (LNCS 1992), pages
119–136, 2001.

35

[11] Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In CRYPTO’87,
Springer (LNCS 293), pages 120–127, 1988.

[12] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In CRYPTO’89, Springer (LNCS
435), pages 307–315, 1990.

[13] J. Doerner, Y. Kondi, E. Lee and a. shelat. Secure Two-party Threshold ECDSA from
ECDSA Assumptions In the 39th IEEE Symposium on Security and Privacy, 2018.

[14] A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In CRYPTO 1986, Springer (LNCS 263), pages 186–194, 1986.

[15] T. Frederiksen, Y. Lindell, V. Osheter and B. Pinkas. Fast Distributed RSA Key Generation
for Semi-Honest and Malicious Adversaries. To appear at CRYPTO 2018.

[16] E. Fujisaki. Improving Practical UC-Secure Commitments Based on the DDH Assumption.
In SCN 2016, Springer (LNCS 9841), pages 257–272, 2016.

[17] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust Threshold DSS Signatures. In
EUROCRYPT’96, Springer (LNCS 1070), pages 354–371, 1996.

[18] R. Gennaro, S. Goldfeder and A. Narayanan: Threshold-Optimal DSA/ECDSA Signatures
and an Application to Bitcoin Wallet Security. In ACNS 2016, pages 156–174, 2016.

[19] R. Gennaro and S. Goldfeder. Fast Multiparty Threshold ECDSA with Fast Trustless Setup.
In ACM CCS 2018.

[20] N. Gilboa. Two Party RSA Key Generation. In CRYPTO 1999, Springer (LNCS 1666),
pages 116–129, 1999

[21] S. Goldberg, L. Reyzin, O. Sagga and F. Baldimtsi. Certifying RSA Public Keys with an
Efficient NIZK. Cryptology ePrint Archive: Report 2018/057, 2018.

[22] S. Goldfeder. Personal communication, April 2018.

[23] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[24] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. Journal of Cryp-
tology, 18(3):247–287, 2005.

[25] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and Construc-
tions. Springer, November 2010.

[26] M. Keller, E. Orsini, and P. Scholl. Actively Secure OT Extension With Optimal Overhead.
In CRYPTO 2015, Springer (LNCS 9215), 724–741, 2015.

[27] Y. Lindell. Highly-Efficient Universally-Composable Commitments Based on the DDH As-
sumption. In EUROCRYPT 2011, Springer (LNCS 6632), pages 446–466, 2011.

[28] Y. Lindell. Fast Secure Two-Party ECDSA Signing. In CRYPTO 2017, Springer (LNCS
10402), pages 613–644, 2017.

36

[29] P.D. MacKenzie and M.K. Reiter. Two-party generation of DSA signatures. International
Journal of Information Security, 2(3-4):218–239, 2004. An extended abstract appeared at
CRYPTO 2001.

[30] S. Micali, R. Pass and A. Rosen. Input-Indistinguishable Computation. In the 47th FOCS,
pages 367–378, 2006.

[31] P. Paillier. Cryptosystems Based on Composite Degree Residuosity Classes. In EURO-
CRYPT99, Springer (LNCS 1592), pages 223–238, 1999.

[32] C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO 1989,
Springer (LNCS 435), pages 239–252, 1990.

[33] V. Shoup. Practical Threshold Signatures. In EUROCRYPT 2000, Springer (LNCS 1807),
pages 207–220, 2000.

[34] V. Shoup and R. Gennaro. Securing Threshold Cryptosystems against Chosen Ciphertext
Attack. In EUROCRYPT 1998, Springer (LNCS 1403), pages 1–16, 1998.

[35] Porticor, www.porticor.com.

[36] Unbound Tech, www.unboundtech.com.

[37] Sepior, www.sepior.com.

A Zero-Knowledge Proofs

In this section, we present Sigma protocols for the non-standard proofs that we need for our protocol.
These Sigma protocols can be transformed into interactive zero-knowledge proofs of knowledge using
standard techniques (e.g., see [25, Sec. 6.5.2]), and into non-interactive zero-knowledge proofs of
knowledge in the random-oracle model using the Fiat-Shamir transform [14].

A.1 Rerandomization of Tuple – RRE

We present a Sigma protocol for the relation

RRE = {(G, G, q, (P, A,B,A′, B′), (r, s)) | A′ = r ·G + s ·A ∧ B′ = r · P + s ·B}.

that proves that (G,P, A′, B′) is a rerandomization of (G,P, A,B). See Protocol A.1 for the full
description.

37

www.porticor.com
www.unboundtech.com
www.sepior.com

PROTOCOL A.1 (Sigma Protocol for Relation RRE)

Upon joint input (G, G, q,P, A,B,A′, B′) and witness (r, s) for the prover P , the parties work as
follows:

First prover message:

1. The prover P chooses random σ, τ ← Zq, and computes X = σ ·G+ τ ·A and Y = σ ·P+ τ ·B.

2. P sends (X,Y) to the verifier V .

Verifier challenge: V chooses a random e ∈ {0, 1}κs (for statistical security parameter κs), and
sends it to P .

Second prover message:

1. P computes z1 = σ + e · r mod q and z2 = τ + e · s mod q.

2. P sends (z1, z2) to V .

Verification: V accepts if and only if the following holds

1. X = z1 ·G+ z2 ·A− e ·A′, and

2. Y = z1 · P + z2 ·B − e ·B′

We sketch the proof of security, proving completness, special soundness and honest-verifier
zero-knowledge.

Completeness:

z1 ·G+ z2 ·A− e ·A′

= (σ + e · r) ·G+ (τ + e · s) ·A− e · (r ·G+ s ·A)

= σ ·G+ e · (r ·G) + τ ·A+ e · (s ·A)− e · (r ·G)− e · (s ·A)

= σ ·G+ τ ·A
= X,

and

z1 · P + z2 ·B − e ·B′

= (σ + e · r) · P + (τ + e · s) ·B − e · (r · P + s ·B)

= σ · P + e · (r · P) + τ ·B + e · (s ·B)− e · (r · P)− e · (s ·B)

= σ · P + τ ·B
= Y,

and so the verifier accepts.

Special soundness: We show that given (X,Y, e, e′, z1, z2, z
′
1, z
′
2) such that e 6= e′ mod q and

both (X,Y, e, z1, z2) and (X,Y, e′, z′1, z
′
2) are accepting transcripts, it is possible to compute (s, r)

such that A′ = r · G + s · A and B′ = r · P + s · B. By the assumption that both transcripts are
accepting we have that both

e ·A′ = z1 ·G+ z2 ·A−X and e ·B′ = z1 · P + z2 ·B − Y,

38

and
e′ ·A′ = z′1 ·G+ z′2 ·A−X and e′ ·B′ = z′1 · P + z′2 ·B − Y,

Subtracting the equations from each other, we have

(e− e′) ·A′ = (z1 − z′1) ·G+ (z2 − z′2) ·A

and
(e− e′) ·B′ = (z1 − z′1) · P + (z2 − z′2) ·B

Thus, setting r = (z1 − z′1) · (e− e′)−1 mod q and s = (z2 − z′2) · (e− e′)−1 mod q, we have that

A′ = r ·G+ s ·A and B′ = r · P + s ·B

as required. (Observe that since e 6= e′ mod q, the value (e−e′)−1 mod q exists and can be efficiently
computed.)

Honest-verifier zero knowledge: Given e, the simulator chooses random z1, z2 ← Zq and
computes

X = z1 ·G+ z2 ·A− e ·A′ and Y = z1 · P + z2 ·B − e ·B′.

If indeed there exist (s, r) such that A′ = r ·G+ s ·A and B′ = r · P + s ·B, then

X = (z1 − e · r) ·G+ (z2 − e · s) ·A

and
Y = (z1 − e · r) · P + (z2 − e · s) ·B.

Now, set σ = z1− e · r and τ = z2− e · s, and observe that if z1, z2 are chosen at random (as indeed
is the case by the simulator), then σ and τ are also random. This implies that z1 = σ + e · r and
z2 = τ + e · s for random σ, τ and thus the distribution is identical to that of a real proof.

Complexity. The cost of the proof is four exponentiations for the prover and six for the verifier.
When applying the Fiat-Shamir transform, the communication cost is three elements of Zq.

A.2 Knowledge of x in EGexpEncP(x) – REG

We present a Sigma protocol for the relation

REG = {((G, G, q,P, A,B), (x, r)) | (A,B) = EGexpEncP(x; r)}

that expresses knowledge of the encrypted value in an ElGamal encryption-in-the-exponent cipher-
text. See Protocol A.2 for the full description. Recall that (A,B) = EGexpEncP(x; r) means that
A = r ·G and B = r · P + x ·G.

39

PROTOCOL A.2 (Sigma Protocol for Relation REG)

Upon joint input (G, G, q,P, A,B) and witness (x, r) for the prover P , the parties work as follows:

First prover message:

1. The prover P chooses random σ, ρ← Zq, and computes X = σ ·G and Y = σ · P + ρ ·G.

2. P sends (X,Y) to the verifier V .

Verifier challenge: V chooses a random e ∈ {0, 1}κs (for statistical security parameter κs), and
sends it to P .

Second prover message:

1. P computes z1 = σ + e · r mod q and z2 = ρ+ e · x mod q.

2. P sends (z1, z2) to V .

Verification: V accepts if and only if the following holds

1. z1 ·G = X + e ·A, and

2. z1 · P + z2 ·G = Y + e ·B

We sketch the proof of security, proving completness, special soundness and honest-verifier
zero-knowledge.

Completeness: If all messages are computed correctly, then:

z1 ·G = (σ + e · r) ·G = σ ·G+ e · (r ·G) = X + e ·A,

and

z1 · P + z2 ·G = (σ + e · r) · P + (ρ+ e · x) ·G
= σ · P + e · (r · P) + ρ ·G+ e · (x ·G)

= (σ · P + ρ ·G) + e · (r · P + x ·G)

= Y + e ·B,

and so the verifier accepts.

Special soundness: We show that given (X,Y, e, e′, z1, z2, z
′
1, z
′
2) such that e 6= e′ mod q and

both (X,Y, e, z1, z2) and (X,Y, e′, z′1, z
′
2) are accepting transcripts, it is possible to compute (x, r)

where (A,B) = EGexpEncP(x; r). By the assumption that both transcripts are accepting we have
that both

z1 ·G = X + e ·A and z1 · P + z2 ·G = Y + e ·B,

and
z′1 ·G = X + e′ ·A and z′1 · P + z′2 ·G = Y + e′ ·B.

Subtracting the equations from each other, we have

(z1 − z′1) ·G = (e− e′) ·A

40

and
(z1 − z′1) · P + (z2 − z′2) ·G = (e− e′) ·B.

Thus,
A = [(z1 − z′1) · (e− e′)−1 mod q] ·G

and
B = [(z1 − z′1) · (e− e′)−1 mod q] · P + [(z2 − z′2) · (e− e′)−1 mod q] ·G.

Observe that since e 6= e′ mod q, the value (e− e′)−1 mod q exists and can be efficiently computed.
Setting r = (z1 − z′1) · (e− e′)−1 mod q and x = (z2 − z′2) · (e− e′)−1 mod q, the above shows that
(A,B) = EGexpEncP(x; r), as required.

Honest-verifier zero knowledge: Given e, the simulator chooses random z1, z2 ← Zq and
computes

X = z1 ·G− e ·A and Y = z1 · P + z2 ·G− e ·B.

If indeed there exist (x, r) such that A = r ·G and B = r · P + x ·G, then

X = (z1 − e · r) ·G and Y = (z1 − e · r) · P + (z2 − e · x) ·G.

Now, set σ = z1− e · r and ρ = z2− e ·x, and observe that if z1, z2 are chosen at random (as indeed
is the case by the simulator), then σ and ρ are also random. This implies that z1 = σ + e · r and
z2 = ρ+ e · x for random σ, ρ and thus the distribution is identical to that of a real proof.

Complexity. The cost of the proof is three exponentiations for the prover and five for the verifier.
When applying the Fiat-Shamir transform, the communication cost is three elements of Zq.

A.3 Scalar Product on Encrypted Values – Rprod

We present a Sigma protocol for the relation

Rprod = {((G, G, q,P, A,B,C,D,E, F), (t, r, y)) |
(C,D) = EGexpEncP (y; t) ∧ E=y ·A+r·G ∧ F =y ·B+r·P}

that validates that the same y encrypted in (C,D) is used in the scalar multiplication and reran-
domization of (A,B) in order to obtain (E,F). Recall that (C,D) = EGexpEncP(y; t) means that
C = t ·G and D = t · P + y ·G.

41

PROTOCOL A.3 (Sigma Protocol for Relation Rprod)

Upon joint input (G, G, q,P, A,B,C,D,E, F) and witness (t, r, y) for the prover P , the parties
work as follows:

First prover message:

1. The prover P chooses random σ, ρ← Zq, and computes X = σ ·A+ ρ ·G and Y = σ ·B+ ρ · P
and W = σ ·G.

2. P sends (X,Y,W) to the verifier V .

Verifier challenge: V chooses a random e ∈ {0, 1}κs (for statistical security parameter κs), and
sends it to P .

Second prover message:

1. P computes z1 = σ + e · y mod q and z2 = ρ+ e · r mod q.

2. P sends (z1, z2) to V .

Additional Sigma protocol: P proves to V that (G,P, e·C, e·D−z1 ·G+W) is a Diffie-Hellman
tuple (with witness e · t mod q) using the standard Sigma protocol.

Verification: V accepts if and only if the following holds

1. z1 ·A+ z2 ·G = X + e · E, and

2. z1 ·B + z2 · P = Y + e · F

3. The Diffie-Hellman tuple Sigma protocol is accepted.

Observe that when applying the Fiat-Shamir transform, the entire proof is non-interactive. This
is due to the fact that the first proof can be generated, at which point e is obtained and so the
statement for the second Sigma protocol for Diffie-Hellman tuples can be defined and proven.

We sketch the proof of security, proving completness, special soundness and honest-verifier
zero-knowledge.

Completeness: If all messages are computed correctly, then:

z1 ·A+ z2 ·G = (σ + e · y) ·A+ (ρ+ e · r) ·G
= (σ ·A+ ρ ·G) + e · (y ·A+ r ·G)

= X + e · E

and

z1 ·B + z2 · P = (σ + e · y) ·B + (ρ+ e · r) · P
= (σ ·B + ρ · P) + e · (y ·B + r · P)

= Y + e · F,

and so the verifier accepts the first two conditions. In addition

e ·D − z1 ·G+W = e · t · P + e · y ·G− σ ·G− e · y ·G+ σ ·G
= e · t · P

42

and so
(G,P, e · C, e ·D − z1 ·G+W) = (G,P, (e · t) ·G, (e · t) · P)

is a Diffie-Hellman tuple with witness e · t mod q. Thus, the verifier accepts.

Special soundness: We show that given (X,Y,W, e, e′, z1, z2, z
′
1, z
′
2, π, π

′) such that e 6= e′ mod q
and both (X,Y,W, e, z1, z2, π) and (X,Y,W, e′, z′1, z

′
2, π
′) are accepting transcripts (where π, π′ are

the Diffie-Hellman proofs), it is possible to compute (x, r) where (A,B) = EGexpEncP(x; r). By
the assumption that both transcripts are accepting we have that both

z1 ·A+ z2 ·G = X + e · E and z1 ·B + z2 · P = Y + e · F,

and
z′1 ·A+ z′2 ·G = X + e′ · E and z′1 ·B + z′2 · P = Y + e′ · F,

Subtracting the equations from each other, we have

(z1 − z′1) ·A+ (z2 − z′2) ·G = (e− e′) · E

and
(z1 − z′1) ·B + (z2 − z′2) · P = (e− e′) · F.

Thus,
E = (z1 − z′1) · (e− e′)−1 ·A+ (z2 − z′2) · (e− e′)−1 ·G

and
F = (z1 − z′1) · (e− e′)−1 ·B + (z2 − z′2) · (e− e′)−1 · P.

Observe that since e 6= e′ mod q, the value (e− e′)−1 mod q exists and can be efficiently computed.
Setting y = (z1 − z′1) · (e− e′)−1 mod q and r = (z2 − z′2) · (e− e′)−1 mod q, the above shows that
E = y ·A+ r ·G and F = y ·B + r · P as required.

It remains to validate that the value y obtained is indeed the same y as encrypted in (E,D).
The special soundness of the Diffie-Hellman tuple proof (for the two accepting transcripts with e, e′

that contain two different proofs π, π′) provides us with a knowledge extractor to obtain w,w′ ∈ Zq
such that

e · C = w ·G and e ·D − z1 ·G+W = w · P.

and
e′ · C = w′ ·G and e′ ·D − z′1 ·G+W = w′ · P.

This implies that
C = (w − w′) · (e− e′)−1 ·G

and
D = (w − w′) · (e− e′)−1 · P + (z1 − z′1) · (e− e′)−1 ·G.

From above, we have already determined that y = (z1 − z′1) · (e − e′)−1 mod q and thus setting
t = (w − w′) · (e− e′)−1 mod q, we conclude that C = t ·G and D = t · P + y ·G, as required.

43

Honest-verifier zero knowledge: Given e, the simulator chooses random z1, z2 ← Zq and
computes

X = z1 ·A+ z2 ·G− e · E and Y = z1 ·B + z2 · P − e · F,

and generates a simulated proof π for the Diffie-Hellman tuple.
If indeed there exist (y, r) such that E = y ·A+ r ·G and F = y ·B + r · P, then

X = z1 ·A+ z2 ·G− e · y ·A− e · r ·G = (z1 − e · y) ·A+ (z2 − e · r) ·G

and
Y = z1 ·B + z2 · P − e · y ·B − e · r · P = (z1 − e · y) ·B + (z2 − e · r) · P.

Setting σ = z1 − e · y and ρ = z2 − e · r, we have that the distribution is identical (using the same
argument as in Section A.2 for REG). (The simulation of the Diffie-Hellman tuple is perfect, by
the fact that a Sigma protocol is used for that as well.)

Complexity. The cost of the proof is seven exponentiations for the prover (5 for the operations
described in Protocol A.3 and 2 more for the Diffie-Hellman proof) and ten for the verifier (6 for
the operations described in Protocol A.3 and 4 more for the Diffie-Hellman proof) . When applying
the Fiat-Shamir transform, the communication cost is 6 elements of Zq (3 for Protocol A.3 and 3
more for the Diffie-Hellman proof).

B Full Proof of Security – Fmult

We prove that Protocols 4.3–4.7 securely compute Fmult. We prove the theorem in the (Fzk,Fcom-zk,
FcheckDH)-hybrid model. As described in Section 3.3, Fzk and Fcom-zk can be efficiently instantiated
non-interactively in the random oracle model. These functionalities also have efficient interactive
instantiations without relying on a random oracle, but they both increase the round complexity, and
the commitment also increases the computational complexity. We show how to securely compute
Functionality FcheckDH in Section 7.

Theorem B.1 Assume that the Decisional Diffie-Hellman problem is hard in the group (G, G, q),
and that πprivmult is a private multiplication protocol for malicious adversaries as defined in Sec-
tion 2.3. Then, Protocols 4.3 to 4.7 securely compute the Fmult functionality with abort in the
(Fzk,Fcom-zk,FcheckDH)-hybrid model, in the presence in the presence of a malicious adversary cor-
rupting any t < n parties, with point-to-point channels.

Proof: The intuition behind the security is given in Section 4.3, and so we proceed directly to
describe the simulator. Let A be an adversary and let I ⊆ [n] be the set of corrupted parties. If all
parties are corrupted, then the simulation is trivial. We therefore consider I ⊂ [n] (with |I| < n)
and we denote the set of honest parties by J = [n] \ I. Throughout the proof, we denote corrupted
parties by Pi (i.e., i ∈ I), honest parties by Pj (i.e., j ∈ J), and a running index over [n] by `. We
remark that in the simulation, the simulation of each round begins by simulating the messages that
the corrupted parties receives from the honest in this round, and only then receiving this round
messages from the adversary. This is due to the fact that the adversary is rushing and so may
receive the messages that the honest parties send in round i before sending its own round messages
in round i (this is in contrast to the protocol presentation, where the receipt of round i messages

44

by honest parties is processed at the beginning of round i + 1, since this is the way that honest
parties work). Unless stated otherwise, all operations on scalar values are modulo q.

We construct a simulator S who invokes A internally and simulates an execution of the real
protocol, while interacting with Fmult in the ideal model. We describe the simulator steps separately
for each subprotocol of Fmult.

Initialization: Upon receiving (init,G, G, q), simulator S invokes A upon input (init,G, G, q) and
works as follows:

1. S chooses a random group element P ∈ G.

2. S simulates FRDL
com-zk sending (ProofReceipt, init, j) to Pi, for every i ∈ I and j ∈ J .

3. S receives the messages (ComProve, init, i,Pi, di) that A sends to FRDL
com-zk for every i ∈ I.

4. S chooses random group elements {Pj}j∈J under the constraint that
∑

j∈J Pj = P −
∑

i∈I Pi.
(Specifically, S specifies some j∗ ∈ J and then chooses random Pj for all j ∈ J \ {j∗}. Finally,
S sets Pj∗ = P −

∑
` 6=j∗ P`.)

5. S simulates FRDL
com-zk sending (DecomProof, init, j,Pj , 1) to Pi, for every i ∈ I and j ∈ J .

6. S receives the messages (DecomProof, init, i) that A sends to FRDL
com-zk for every i ∈ I.

7. If for some i ∈ I it holds that a DecomProof message was received and Pi 6= di · G in the
associated ComProve message of Step 3 above, then S sends abort to Fmult, outputs whatever A
outputs and halts. Else, S proceeds to the next step.

8. S stores all of the values {di}i∈I , as well as P and all {P`}n`=1.

Input: Upon receiving (input, sid, ãi) for all i ∈ I, simulator S invokes A upon the same input
and works as follows:

1. S chooses random group elements {Uj , Vj}j∈J .

2. S simulates FREG
zk sending (proof, sid, j, (P, Uj , Vj), 1) to Pi, for every i ∈ I and j ∈ J .

3. S receives the messages (proof, sid, i, (P, Ui, Vi), (ai, si)) that A sends to FREG
zk for every i ∈ I.

4. If for some i ∈ I it holds that Ui 6= si · G or Vi 6= si · P + ai · G, then S sends abort to Fmult,
outputs whatever A outputs and halts. Else, S proceeds to the next step.

5. S computes U =
∑n

`=1 U` and V =
∑n

`=1 V`, and stores (sid, (U, V), {Ui, Vi, ai, si}i∈I , {Uj , Vj}j∈J).

Element-out: Upon receiving (element-out, sid), if some sid has been stored, then simulator S
sends (element-out, sid) to Fmult from every Pi with i ∈ I. Upon receiving back (element-out, sid,A)
and points (A1, . . . , An), S invokes A upon the same input and works as follows:

1. Let (Uj , Vj) be the pair of points stored by S associated with sid for each honest party Pj (if
none exists, then S does nothing).

45

2. S simulates Pj sending Aj to Pi, and FRDH
zk sending (proof, sid, j, (G,P, Uj , Vj − Aj), 1) to Pi,

for every i ∈ I and j ∈ J .

3. S receives the messages (proof, sid, i, (G,P, Ui, Vi − Ai), si) and Ai, that A sends to FRDH
zk and

to Pj , for every i ∈ I and j ∈ J . If for some i ∈ I it holds that Ui 6= si ·G or Vi 6= si · P + ai ·G,
then S sends abort to Fmult, outputs whatever A outputs and halts.

Affine: This operation involves local operations by the parties only. Thus, S carries out the local
transformations on the values that it has stored as well, in the same way as the honest parties.

Multiply: Upon receiving (mult, sid1, sid2), if these have been stored, then simulator S sends
(mult, sid1, sid2) to Fmult from every Pi with i ∈ I. Upon receiving back (mult-out, sid1, sid2, c), S
sets sid = sid1‖sid2, invokes A and works as follows:

1. Let (sid1, (U, V), {Ui, Vi, ai, si}i∈I , {Uj , Vj}j∈J) and (sid2, (X,Y), {Xi, Yi, bi, ti}i∈I , {Xj , Yj}j∈J)
be as stored.

2. S chooses random values aj , bj under the constraint that (
∑n

`=1 a`) · (
∑n

`=1 b`) = c, and plays

the honest parties in protocol πprivmult using inputs {aj , bj}j∈J . (The idea here is that if A uses
the “correct” inputs then this will be indistinguishable. Otherwise, the parties will abort before
revealing anything anyway. Note that the corrupted parties’ values {ai, bi}i∈I were extracted by
S in the simulation of the input phase, and possibly modified in a known way using affine. Thus,
there values are known to S.)

3. S chooses random group elements Ej , Fj ∈ G for every j ∈ J .

4. S simulates FRprod

zk sending (proof, sid, j, (P, X, Y, Uj , Vj , Ej , Fj), 1) to Pi, for every i ∈ I and
j ∈ J .

5. S receives the messages (proof, sid, i, (P, X, Y, Ui, Vi, Ei, Fi), (ai, si, s
′
i)) that A sends to FRprod

zk
for every i ∈ I. If for some i ∈ I it holds that the proof is incorrect (checked via the witness),
then S sends abort to Fmult, outputs whatever A outputs and halts. Else, S proceeds to the
next step.

6. S chooses random Aj , Bj ∈ G and simulates FREG
zk sending (proof, sid, j, (P, Aj , Bj)) to Pi, for

every j ∈ J and i ∈ I.

7. S receives (proof, sid, i, (P, Ai, Bi), (ci, ŝi)) that A sends to FREG
zk for every i ∈ I. If for some

i ∈ I it holds that (Ai, Bi) 6= EGexpEnc(c′i; ŝi), then S sends abort to Fmult, outputs whatever A
outputs and halts.

8. S computes A = E −
∑n

`=1A` and B = F −
∑n

`=1B`.

9. S receives messages (check, i, A,B, di) that A sends to FcheckDH for every i ∈ I.

(a) If di · G 6= Pi for any i ∈ I, then S simulates FcheckDH sending reject to all parties, sends
abort to Fmult, outputs whatever A outputs and halts.

46

(b) S verifies that
∑n

`=1 c` = c, where {ci}i∈I are the values that S receives from A in the proof

messages that it sends to FREG
zk in Step 7, and {cj}j∈J is the output that the honest parties

simulated by S receive from the πprivmult execution in Step 2. If no, then S simulates FcheckDH

sending reject to all parties, sends abort to Fmult, outputs whatever A outputs and halts.

If reject was not sent, then S simulates FcheckDH sending accept to all parties.

10. S simulates FRDH
zk sending (proof, sid, j, (P, Aj , Bj − cj · G), 1) to Pi, and Pj sending cj to Pi,

for every i ∈ I and j ∈ J .

11. S receives the messages (proof, sid, i, (P, Ai, Bi − ci · G), ŝi) that A sends to FRDH
zk for every

i ∈ I. If for some i ∈ I it holds that Ai 6= ŝi · G or Bi − ci · G 6= ŝi · Bi, then S sends abort to
Fmult, outputs whatever A outputs and halts.

12. S receives the values ci that A instructs Pi to send to Pj , for every i ∈ I and j ∈ J .

13. For every j ∈ J , S verifies if c =
∑n

`=1 c`, with the ci values received specifically by Pj . If yes,
then S sends (continue, j) to Fmult (to instruct that Pj receives output); if not, then S sends
(abort, j) to Fmult (to instruct that Pj receives abort).

This completes the description of the simulator. We now proceed to show that the output distri-
bution generated by an execution of S in the ideal world is computationally indistinguishable from
a real execution of the protocol with A in the real world. Observe that the main difference is that
the ciphertexts seen by A in the real execution are valid encryptions whereas in the simulation they
are random pairs of group elements, and the inputs used in the subprotocol πprivmult. The proof will

therefore rely on the DDH assumption in group G and on the assumption that πprivmult is a private
multiplication protocol (see Section 2.3).

We prove via a series of games.

Game 0: This is an ideal-world execution with S and Fmult.

Game 1: In this game, we modify Fmult so that Fmult sends all honest party inputs {aj}j∈J to
S, whenever input is called. Since S is unchanged, this clearly makes no difference to the output
distribution.

Game 2: In this game, we modify the simulator S so that instead of running πprivmult with aj , bj
chosen randomly under the specified constraint, it uses the correct aj , bj received from Fmult. The
fact that the output distributions of Game 1 and Game 2 are indistinguishable follows from the
privacy properties of πprivmult. In particular, if the implicit inputs {a′i}i∈I and {b′i}i∈I used by the
adversary are such that

∑
i∈I a

′
i =

∑
i∈I ai mod q and

∑
i∈I b

′
i =

∑
i∈I bi mod q then this guarantees

that the output c = (
∑n

`=1 a`) · (
∑n

`=1 b`) mod q, is the same in both cases (when the honest parties
inputs are correct, or chosen randomly under the simulator-specified constraint), as long as no
modular reduction took place. Thus, by input indistinguishability the view of the adversary is
indistinguishable, even given all c1, . . . , cn as in the last step of the protocol.

In contrast, if the implicit inputs {a′i}i∈I and {b′i}i∈I used by the adversary are such that∑
i∈I a

′
i 6=

∑
i∈I ai or

∑
i∈I b

′
i 6=

∑
i∈I bi, then the adversary will be able to supply {c′i}i∈I such

that all sum to the correct c with probability only 1/q, since all the honest parties’ inputs {aj , bj}j∈J

47

are uniformly distributed shares. Thus, in this case, the adversary will not view c1, . . . , cn. This is
therefore indistinguishable by the privacy property of πprivmult. Furthermore, this argument guarantees
that the fact of c being correct or incorrect does not reveal any information to the adversary (since
this fact is revealed in the protocol).

We stress that in the entire simulation by S, the private-keys for Paillier are only needed within
πprivmult. Thus, S can run the simulation in Games 1 and 2 without knowing the Paillier private keys

Game 3: In this game, S generates all encryptions of corrupted parties correctly using the aj , bj
values it received (this includes the (Uj , Vj) values in input, and the (Ej , Fj) and (Aj , Bj) values in
mult).

In order to show that the output distributions of Games 2 and 3 are computationally indistin-
guishable, we show that there exists a distinguisher D who receives a tuple (G, P̂,Λ,Ω) of group
elements of G for input. Then, D generates the output distribution of Game 2 if they are a random
tuple, but generates the output distribution of Game 3 if they are a Diffie-Hellman tuple (i.e., there
exists some r such that Λ = r · G and Ω = r · P̂. This implies indistinguishability of the output
distribution of the games, under the DDH assumption.

The idea behind the reduction is that D can define P = P̂ and then use Λ,Ω to construct
ciphertexts that are either random or valid, depending on whether or not its input was random or
a Diffie-Hellman tuple. We use a rerandomization method, defined by

Rerand(Λ,Ω; s, t) = (s · Λ + t ·G, s · Ω + t · P̂). (1)

We denote by Rerand(Λ,Ω) the above procedure when s, t← Zq are random. Clearly, if (G,P,Λ,Ω)
is a Diffie-Hellman tuple, then (G,P, A,B) where (A,B) = Rerand(Λ,Ω) is a random Diffie-Hellman
tuple (where by random we mean that it is independent of (G,P,Λ,Ω)). This is due to the fact
that if Λ = r ·G and Ω = r · P̂ then A = (s · r+ t) ·G and B = (s · r+ t) · P. Since s, t are random,
this is an independent and uniformly distributed Diffie-Hellman tuple. In contrast, if (G,P,Λ,Ω)
is not a Diffie-Hellman tuple, then (G,P, A,B) where (A,B) = Rerand(Λ,Ω) is a random tuple,
independent of (G,P,Λ,Ω). In order to see this, write Λ = r1 · G and Ω = r2 · G. Then, for any
ρ1, ρ2, we have that A = ρ1 · G and B = ρ2 · G if and only if s · r1 + t = ρ1 and s · r2 + t = ρ2.
Since r1 6= r2, there is a single solution (s, t) to this system of equations. Since s, t are random,
this proves that the result is an independent random tuple.

We proceed to describe D. Distinguisher D receives all of the parties’ inputs and plays the
trusted party computing Fecdsa in Games 2/3 (Fecdsa is the same in both of these games), as
well as the ideal-world honest parties. In addition, D invokes A and runs the simulator S like in
Games 2/3 with the exception of how the encryptions are generated, as described above. D works
as follows:

Initialization: D invokes A upon input (init,G, G, q) and works in exactly the same way as S
except that it defines P = P̂ instead of choosing it randomly itself. This is therefore exactly the
same distribution as S.

Input: D works exactly like the simulator S except that instead of choosing random group
elements {Uj , Vj}j∈J it sets (U ′j , V

′
j) = Rerand(Λ,Ω) for every j ∈ J (using independent ran-

domness in each call to Rerand. Then, D sets Uj = U ′j and Vj = V ′j + aj · G. D stores(
sid, (U, V), {U`, V`, a`}`∈[n], {si}i∈I

)
.

48

Observe that if the tuple (G,P,Λ,Ω) is a Diffie-Hellman tuple, then all (Uj , Vj) are valid
encryptions of the honest parties’ inputs as in Game 3. In contrast, if the tuple (G,P,Λ,Ω) is
random, then (Uj , Vj) is random and so exactly is Game 2 (adding aj · G makes no difference to
the distribution since U ′j , V

′
j are truly random and independent).

Element-out: D works exactly like the simulator S.

Affine: This is a local operation and thus the D carry out the local transformation on all values
it holds.

Multiply: D invokes A on (mult, sid1, sid2) and works as follows.

1. Let (sid1, (U, V), {U`, V`, a`}n`=1, {si}i∈I ,) and
(
sid2, (X,Y), {X`, Y`, b`}`∈[n], {si}i∈I

)
be as stored.

2. D plays the honest parties in protocol πprivmult using the inputs {aj , bj}j∈J exactly like S in
Game 2/3.

3. For every j ∈ J , D computes (E′j , F
′
j) = Rerand(Λ,Ω) and defines Ej = E′j and Fj = F ′j+(aj ·b)·G

(where aj , b are the correct values known to D).

Observe that if (Λ,Ω) are Diffie-Hellman, then the distribution over all (Ej , Fj) pairs is correct
and so exactly like Game 3. In order to see that they are correct, observe that all values
provided by A involved in computing Ej , Fj are those provided in input and are validated with
zero-knowledge proofs. Thus, computing an encryption of aj · b directly as carried out by D
yields the same result as the simulator in Game 3 who uses the honest parties’ inputs.

In contrast, if (Λ,Ω) are random, then then all (Ej , Fj) pairs are independently random, just
like S in Game 2.

4. D simulates FRprod

zk sending the zero-knowledge proofs, exactly like S.

5. D simulates receives the zero-knowledge proofs for FRprod

zk , exactly like S.

6. Let {cj}j∈J be the outputs received by D when running the honest parties in πprivmult with A, above.
For every j ∈ J , D computes (A′j , B

′
j) = Rerand(Λ,Ω) and defines Aj = A′j and Bj = B′j + cj ·G.

As above, (Aj , Bj) is a valid encryption of cj as in Game 3 (and a real execution) if (Λ,Ω) is a
Diffie-Hellman tuple, and is a random pair as in Game 2 otherwise.

7. D proceeds and follows the simulation instructions to the end.

8. D outputs whatever A outputs, together with the outputs of the honest parties (it knows these
values since it also plays the trusted party computing Fecdsa).

As explained throughout the description above, when the tuple (G, P̂,Λ,Ω) received by D is a
Diffie-Hellman tuple, then the output distribution generated by D is distributed as in Game 2. In
contrast, when (G, P̂,Λ,Ω) is a random tuple, the output distribution generated by D is distributed
as in Game 3. Thus, the output distributions of Games 2 and 3 are indistinguishable under the
assumption that the DDH assumption holds in G.

49

Game 4: Game 3 is exactly the same as a real execution, with the exception that P is chosen
by S and not the result of the computation by the parties in init. We therefore modify S so that
it plays honestly in init instead of running the simulation. Observe that since the Pj values are
chosen randomly by S in Game 4 and not revealed to A until after it has sent the Pi values, the
sum P =

∑n
`=1 P` is uniformly distributed, exactly as in Game 3. Thus, this makes no difference.

Summing up. Game 4 is exactly the same as a real execution, except for the technicality that
Fmult is involved and hands the honest parties their outputs. However, in Game 4, the simulator
S runs the instructions of the honest parties exactly, with the addition of perfectly simulating the
Fzk, Fcom-zk and FcheckDH functionalities. Thus, the output distribution of Game 4 is identical
to the real execution. We conclude that the output distribution of the simulation (Game 1) is
computationally indistinguishable from the output distribution of the real execution (Game 4)
under the DDH difficulty assumption in G. This concludes the proof.

Consistency in the point-to-point model. The above proof essentially assumes that all honest
parties receive the same values in each round, as if there is a broadcast channel. As described after
Protocol 4.4, the parties exchange hashes of all received input encryptions in the round following
each input. Since the simulator can simulate the first round of any subprotocol following input even
if the adversary was not consistent, this suffices (since in the following round, all parties abort). In
addition, note that consistency is guaranteed in the init phase since Fcom-zk is used. Now, within
element-out and mult, all messages generated by the parties are proven in zero knowledge. Thus,
even if the adversary sends different ciphertexts to different honest parties, these will always be of
the same correct results. Thus, the simulator can follow the same strategy as above, and provide
the expected honest party messages back, for each honest party. Thus, our protocol is secure in
the point-to-point model of communication.

50

	Introduction
	Background and Prior Work
	Our Results
	Cryptocurrency Wallets and Custody
	Concurrent Work

	Preliminaries
	The ECDSA Signing Algorithm
	ElGamal in the Exponent
	Private Multiplication

	Definition of Security
	The ECDSA Ideal Functionality
	Security Model
	Ideal Functionalities

	Secure Multiplication – Fmult
	Functionality Definition
	Checking Diffie-Hellman Tuples
	Securely Computing Fmult

	Securely Computing ECDSA
	The Protocol for Fecdsa
	Efficiency and Experimental Results
	Theoretical Complexity
	Experimental Results

	Proof of Security of Protocol 5.1
	Extending the Protocol to Threshold (and General) Access Structures

	Private Multiplication Instantiations
	Private Multiplication Using OT
	Private Multiplication Using Paillier
	The Multiplication Protocol
	Security
	The Zero-Knowledge Proof of Correct Paillier Generation
	Zero-Knowledge Equality of Paillier Encryption and Pedersen Commitment
	Range Proof for Pedersen with Slack (ZK-CFT)
	Range Proof for Paillier with Slack
	Zero-Knowledge Proof of Pailler-Pedersen Range-Bounded Affine Operation

	Checking Diffie-Hellman Tuples
	Zero-Knowledge Proofs
	Rerandomization of Tuple – RRE
	Knowledge of x in EGexpEnc¶(x) – REG
	Scalar Product on Encrypted Values – Rprod

	Full Proof of Security – Fmult

